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17	 Computational Thinking
Paul Curzon, Tim Bell, Jane Waite, and Mark Dorling

17.1 � Motivational Context

The term “computational thinking” was popularized by Wing (2006) as 
the form of thinking computer scientists practice. Computational thinking has 
since been widely accepted and promoted both as the skill set that programmers 
develop and as the general thinking skills that should be developed by com-
puter scientists as they learn the discipline. Wing also advocated it as a generally 
useful problem-​solving skill set that all should learn. Computational thinking 
also arguably offers a powerful way of both thinking and doing across a wide 
range of subject disciplines, transforming the way that they are carried out, such 
as through the use of computational modeling.

17.1.1 � Computation

Computational thinking is not primarily about the development of electronic 
computer systems. It is about computation and the development of systems 
based on computation. Computation dates back millennia. The first algorithms 
were developed thousands of years before digital computers. One of the earliest, 
and most famous, is Euclid’s algorithm (c. 300 BCE; cited in Euclid, 1997) for 
computing the greatest common divisor of two numbers. The word “algo-
rithm” derives from the name of the Muslim scholar Muḥammad ibn Mūsā 
al-​Khwārizmī and is most closely associated with his work On the Calculation 
with Hindu Numerals (al-​Khwārizmī, c.  825). It concerns the algorithms for 
doing arithmetic with decimal positional numbers. Computation is not just 
about numeric calculation, however. It concerns symbol processing more gen-
erally. Early algorithms, predating electronic computers, include encryption-​
related algorithms that concern the manipulation of letters and other symbols. 
Computation does not need to be done by machines, of course. Humans can 
follow algorithms, and al-​Khwārizmī’s book was about algorithms for people 
to follow. Indeed, the first actual “computers” were people, not machines. The 
term was originally used to describe the people tasked with doing the astro-
nomical calculations needed to develop maritime tables for navigation at sea 
(OED, 1993). Indeed, Charles Babbage did this job, and it was a motivation 
for him to develop machines that could do the calculations automatically. 
The developers of these pre-​computer age algorithms were certainly engaged 
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in a form of computational thinking, in the sense of solving computational 
problems through precise algorithmic solutions.

Turing (1936) famously articulated a formal idea of computation in the 
thought experiment of a Turing machine, and a variety of other models of 
computation have been devised that have been proved equivalent. These models 
define the limits of what computation, and so algorithms, can do. Since compu-
tational thinking concerns the design of computational systems, these theories 
give limits on the possible.

Computation is not restricted to the manipulation of abstract symbols. It 
can and does happen to physical things in the world that embody information, 
and not just inside computer chips (which are embodiments of computation in 
the physical world too). Computation in such a computational system involves 
information processing through, for example, the movement and transform-
ation of information between different physical objects. This is a core idea 
behind distributed cognition (Hutchins, 1995), where the brain is seen as an 
information processing agent and cognition is seen as extending to incorporate 
such computational systems in the world. Hutchins’ core example is analysis 
of the computational properties of ship navigation, exploring how informa-
tion is transformed as it passes between different forms, physical and mental. 
This richer view of computation is actually vital in the development of the 
modern computer systems that play an increasingly physical role in the world, 
augmenting human processes in complex ways.

This view of computation as including movement and transformation of phys-
ical objects means that “unplugged computing,” where physical objects and role 
play are used to illustrate computing concepts (Bell, Alexander, Freeman, & 
Grimley, 2009; Bell, Rosamond, & Casey 2012), is not just the use of analogy, 
but is actually about computation itself. Computational thinking is being done 
in devising unplugged computational systems, whether inventing a self-​working 
magic trick (an algorithm for a magical effect) as illustrated by Curzon and 
McOwan (2017) or devising an activity of searching for numbered balls under 
cups using a binary search algorithm. This mirrors real-​world, everyday uses of 
computational thinking too, such as when a teacher, presented with a pile of 400 
paper exam scripts that must be put in sorted order by ten-​digit student number, 
devises a form of radix sorting as an efficient way to do so in preference to using 
some variation of bubble sorting. A  more forward-​thinking computational 
thinker might later redesign the system as a whole, allocating desks to students in 
the required order, allowing the students to physically sort themselves and so their 
scripts. Even without turning to digital solutions, algorithmic thinking is useful.

17.1.2 � What Is Computational Thinking?

Wing (2006) is clear that computational thinking is about thinking like a com-
puter scientist. It is, however, also a fundamental analytical skill for everyone, 
not just for computer scientists. She is also clear that the concept she is defining 
is about computing processes, whether they are executed by a human or by 
a machine. It is specifically not just the skill of computer programming, but 
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the much wider way of thinking that computer scientists (not specifically 
programmers) develop.

There are, unfortunately, now a wide variety of sometimes polarized views over 
what computational thinking should be (Denning, 2017; Tedre & Denning, 2016; 
Denning & Tedre, 2019). This has led to problems, not least that research studies 
use different definitions, often without being clear what they mean by the term. 
This diversity of views is largely a result of how successful the original definition 
was, resonating around the world. This success has led to it being incorporated 
into education systems globally, and this has made its meaning an issue of politics, 
with different groups using it with their own definition to fit their own priorities 
and agendas. Views mainly differ on the breadth of applicability and the nature 
of computational agents (Figure 17.1). Most literature is closer to the middle of 
this diagram, but the authors have regularly encountered professionals who argue 
strongly for one of the extreme views.

Despite the different views, it is ultimately more useful as an educator to 
focus on the agreement, which as Figure 17.1 shows is large, and not worry 
which end of  the spectrum resonates personally. There is general agreement 
around a large central core (see Section 17.3 for a deeper summary) that com-
putational thinking is the way of  thinking used to develop solutions in a form 
that ultimately allows “information processing” or “computational” agents 
to execute those solutions. The computational agent should be guaranteed 
to achieve some specified result without further thought or problem-​solving 
involved, just by blindly and precisely following the solution. Ultimately, 
solutions are not one-​off answers like “the cheapest route is via Hong Kong,” 
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Figure 17.1  Agreement and disagreement around two views of what 
computational thinking should be.
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but rather are algorithms that solve a general case (e.g., “find the cheapest 
route”). Computational thinking is thus concerned with the development of 
systems involving information processing, and it is the focus on algorithmic 
solutions that differentiates it from other problem-​solving approaches. There 
are different views, however, on what can be a computational agent. It could 
be a machine or human (or possibly even an animal or other biological system 
if  it can follow those instructions precisely and blindly). It could also be a 
combination of  both.

Programming relies directly on this skill set, but computational system design 
and development is about far more than just coding itself. The development 
of higher levels of computational systems relies on these skills, as does innov-
ation in computing more generally. As Wing (2006) notes, “Thinking like a com-
puter scientist means more than being able to program a computer. It requires 
thinking at multiple levels of abstraction.”

Although the idea of “computational thinking” has been around for cen-
turies, the term was first used by Papert (1980) as part of his call for a new 
approach to teaching mathematics based on computational methods (see also 
Chapters 1, 19, 20, and 22). This original definition is about the idea that com-
putational thinking is a way of doing other subjects differently. He suggested it 
as part of a teaching methodology for computational environments through the 
Logo programming language. In this context, it can be seen more as a novel way 
of gaining understanding rather than narrowly about solving problems. It is this 
idea that is transforming science and leading to innovation more generally (see 
Section 17.1.9). However, it was Wing’s use of the term, not Papert’s, which led 
to the concept being widely adopted.

17.1.3 � A “Traditional” View or Not?

Denning (2017) has brought differing views to a head. He identifies what he calls 
a “traditional view”. Essentially, this boils down to the idea that computational 
thinking should be based on computational models and algorithms that have 
definite computational steps. Part of this view is that computational agents must 
act like machines (or, at least, well-​defined models of machines) and therefore 
are most likely to be encountered by beginners when developing software (i.e., 
developing instructions in formally defined languages for electronic computers 
of the kind that currently exist). Denning claims that there is no evidence that 
developing programming skills alone extends to more general problem-​solving, 
so this justification of computational thinking for all should be dropped, at 
least until evidence is produced that it has broader benefits. He argues that the 
ultimate goal of computational thinking is computational design. More widely, 
its goal is computational systems design.

As many of the concepts that have been espoused as fundamental to the term 
“computational thinking” are well known in other disciplines, Denning (2017) 
argues that computational thinking should not be given the special status it has 
as a general problem-​solving approach.
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Wing (2006), on the other hand, argues that computational thinking is much 
more than this. It is both a skill that leads to programming ability and a gener-
ally useful skill. A consequence of this view is that it can be learned separately 
from programming. Even if  programming does not lead to general problem-​
solving skill, this wider definition of computational thinking that intersects 
with other subject views of problem-​solving may lead to more general problem-​
solving skills.

Denning outlines a series of precursors to Wing in discussing the general 
skill set developed by programmers and advises we stick to Aho’s more recent 
though “historically well-​grounded definition”:

Mathematical abstractions called models are at the heart of computation and 
computational thinking. Computation is a process that is defined in terms 
of an underlying model of computation and computational thinking is the 
thought processes involved in formulating problems so their solutions can be 
represented as computational steps and algorithms.
(Aho, 2012, pp. 834–​835)

Denning grounds the skill set of computer scientists firmly in working 
throughout with defined models of computation, and rules out calling anything 
computation that is not based on such a model. It appears to rule out both 
informal demonstrations (such as the classic sandwich-​making exercise where 
instructions are followed literally) and working at higher levels of abstraction 
without a specific model targeted. However, a major point of thinking at higher 
levels of abstraction for a problem means the details (and model) at lower 
levels are explicitly ignored, and this skill of working at all levels needs to be 
developed. That is part of the power of computational thinking and is certainly 
important in creating programs.

17.1.4 � What Is a Computational Agent?

A key question is whether only machines should be classed as computational 
agents. If  so, this leads to the position that computational thinking is only 
concerned with the creation of programs. If  so, then arguably there is no need 
for a new term of “computational thinking” at all, as programming itself  is the 
skill set.

Wing and many others since have argued for a wide definition. At the outset, 
Wing (2006), for example, stated that computational agents can be humans, 
not just machines. This wider view puts the emphasis not on machines or pro-
gramming, but on information processing and the design and understanding 
of systems that do such information processing. Humans can and do perform 
such information processing, though they are clearly less capable of following 
instructions precisely. This is embodied in computing curricula in England and 
other countries, and it is because of this wide definition that the idea of com-
putational thinking has become so widespread. It is also the foundation of the 
arguments for computing for all and the basis of the resultant push around the 
world that it, and not just programming, should be taught in school, not just in 
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higher education. A significant reason for this push is because it makes clear that 
computational thinking is a useful tool for all to learn, not just programmers. If  
it is just useful for programmers as a skill, then there is far less justification for 
teaching it to all from primary upwards.

Denning (2017) argues for a narrower definition: that a computational agent 
should not involve human judgment. This frames it as a skill for students who 
are learning to program, since this is the environment in which a beginner 
might encounter such computational agents. He argues that there is no evidence 
that this narrow version has any transferable benefits beyond computing itself  
and therefore such claims should be dropped. Lee (2016) takes a related view, 
arguing that computational thinking is definitely not about creating algorithms 
for humans to follow, but that it is more than just programming. She puts the 
emphasis on it being about taking real-​world problems and creating abstractions 
of them and algorithms that solve them, which are then implemented on 
computers.

17.1.5 � An Evolving Definition

Denning, in part, is reacting to the way a range of authors have adapted the 
meaning of the term. According to Dagienė et  al. (2017), authors that have 
further developed the meaning include Grover and Pea (2013), Kalelioglu et al. 
(2016), Lu and Fletcher (2009), Selby and Woollard (2013), and Wolz et  al. 
(2011). These authors have argued that there is a place in the progression of 
learning to think computationally for activities that do not necessarily result in 
implementing a programmed solution.

For example, Lu and Fletcher (2009), though taking computational thinking 
to be about solving problems with computers, explicitly argued that it should 
be split from programming in the early years. They argued that the focus 
should be on

establishing vocabularies and symbols that can be used to annotate and 
describe computation and abstraction, suggest information and execution, 
and provide notation around which mental models of processes can be built.
(Lu & Fletcher, 2009, p. 260)

They posited that doing so would lead to students being in a better position, 
with such a foundation, to learn both programming and more advanced com-
puting. Their argument is that a computational thinking language (CTL) must 
permeate the pedagogy. They give wide-​ranging examples of how such language 
and unplugged computational thinking might be developed in an interdiscip-
linary way from US curricula, all concerning the students doing computation, 
not writing programs. The focus is on computation and information processing 
tasks generally, not on how they are specifically implemented in computers. 
Curzon’s practical approach to teaching programming itself, as well as data 
structure and algorithms concepts (Curzon, 2002), takes a similar explanatory 
approach, teaching programming ideas divorced from writing programs, using 
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wide-​ranging analogies with real-​world processes to explain general computing 
concepts, but getting completely away from the syntax and detailed semantics 
of a specific language. He advocates the same approach for introducing com-
putational thinking as embodied by the Teaching London Computing website 
(http://​teachinglondoncomputing.org).

Selby and Woollard (2013), in searching for an appropriate definition to use in 
school education, looked for consensus. They surveyed the literature concerned 
with computational thinking and came up with a definition based on the most 
commonly agreed-​upon components of computational thinking. Computing at 
School (CAS) adopted this basic definition to promote computational thinking 
in England (Csizmadia et al., 2015). This is based on the five top-​level categories 
that were most commonly encountered and so showed the most consensus from 
the research community:  algorithmic thinking, abstraction, decomposition, 
generalization, and evaluation.

Further evolution of the term may also be needed if  “computational 
thinking” is taken to be the skill set needed to develop computational systems 
in the future. For example, Chapter  20 argues for the need to include more 
explicitly the underlying skills needed for new areas such as machine learning, 
distributed computing, and quantum computing paradigms. This implies that 
not just logical thinking, but also statistical and probabilistic thinking skills will 
be needed for the development of computational systems in the future.

17.1.6 � Problem-​Solving, Expression, Creativity, and Communication

Computational thinking is currently mainly associated with problem-​solving, 
but this may limit the opportunities for getting the most from it, as well as 
limiting those who might be attracted to using it. Bers (2017) links back to 
Papert’s call for technological fluency as well as computational thinking 
(Papert, 1980), describing technological fluency as when one can express one-
self  “creatively, in a fluent way, effortlessly and smoothly as one does with lan-
guage” (Bers, 2008). She sees computational thinking as too associated with 
problems and draws out the potential for using it for communication, creativity, 
and expression beyond science, technology, engineering, and mathematics 
(STEM). This resonates with classroom practice, where students probably do 
not see their programs as algorithms that solve a problem, but as instructions 
that make something happen. Brennan and Resnick’s (2012) computational 
thinking concepts, practices, and perspectives meet Denning’s point about the 
link between computational thinking and programming, but they highlight the 
importance of  expression, connecting, and questioning as a means to “code to 
learn” rather than just learning to code (Resnick, 2013). Kafai (2016) advocates 
for “computational participation” rather than just computational thinking. 
Calling it “participation” allows for more emphasis on community, where code 
is written to be shared rather than a disposable exercise, where developing soft-
ware occurs in the context of  a community, and where others’ work can be 
remixed.
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17.1.7 � Pedagogy and Pragmatism

There are two distinct issues in this debate that need to be separated: (1) What 
is the skill set involved in computational thinking? (2)  How does one take 
children on the journey to gain those skills? Teaching is a pragmatic endeavor. 
Many subjects are taught using a spiral learning model where “lies to chil-
dren” (misconceptions) are used to simplify concepts in order to make them 
accessible at a younger age. Denning and Tedre (2019) highlight that what 
computational thinking really is varies by necessity as students progress from 
beginner to professional, and that failing to make this distinction leads to 
conflict. Whether or not one wishes to take a narrow or wide definition of 
computational thinking, there is still a great deal of  benefit to be gained by 
looking for a simplified progression and taking a constructivist approach, 
building on everyday ideas that are already understood. There are good peda-
gogic reasons for doing this. It involves presenting more accessible versions of 
computational thinking to younger age groups –​ ones that fudge the details. 
A  perfectly sensible first step is to work on writing clear instructions with 
young primary school students (such as telling a friend how to walk the out-
line of  a square, writing recipes, or writing out a dance routine). Later, the 
limitations of  human instructions such as recipes can be explored, and this can 
motivate the need for the more rigorous, formal treatment found in programs. 
Foundational concepts can be introduced in this way, then built on and refined 
as one progresses through the education system.

Even if  analogical approaches are rejected, the issue is not whether there is 
a formal model per se, but whether a computational agent, in principle, could 
blindly follow the resulting algorithm, and if  it did so accurately, whether it 
would guarantee the same outcome over and over again. Attempts at creating 
algorithms by younger learners are likely to be incomplete, inaccurate, and 
clumsy, but as they make progress, precision, completeness, cohesion, and ele-
gance will improve, thereby showing such progression. This will apply whether 
one is starting to write programs, recipes, or other instructions for humans. Just 
because the young, novice developer has not provided or worked with a precise 
model of computation, a mathematical semantic model, or implemented a fully 
working, complete computational stack all the way down doesn’t mean they are 
not thinking computationally or about computation. Human-​centered software 
development also does not start with algorithms and models, but rather with 
understanding human and socio-​technical needs. It is only later in good devel-
opment processes that underlying models, precision, and completeness enter 
the scene.

Despite issues with definitions, pragmatically, the idea of computational 
thinking has proved immensely useful, especially in putting a focus on the 
importance of the general skill set of computer scientists, as well as promoting 
computing for all in education systems worldwide. It has helped improve the 
standing of computing in schools as a rigorous subject that is more than office 
IT skills in a variety of countries.
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Whichever definition we adopt, it is clear that programming is a key step in 
teaching computational thinking, but also that learners build upon existing 
knowledge and skills starting with relevant and familiar contexts. Similarly, 
we also need to be aware that becoming a programmer is not the goal for all 
students, in the same way that becoming a professional novelist is not the goal 
for all those learning to write.

17.1.8 � Changes to School Curricula

A consequence of  the push arising from Wing’s seminal article (Wing, 2006) 
has been that computational thinking has become a foundation stone of 
new syllabuses of  computing. It has also provided a useful term to articu-
late changes that were already planned for curricula and enabled curriculum 
designers to articulate the broader principles intended in revised curricula. 
This has especially avoided the perception that the changes were only about 
esoteric topics of  interest to programmers or just about developing skills 
to groom students for work purely in the software development industry. 
For example, the purpose of  study of  the English National Curriculum for 
Computing (Department for Education, 2013), which applies from primary 
school upwards, starts:  “A high-​quality computing education equips pupils 
to use computational thinking and creativity to understand and change the 
world.” A key aim, in line with the Royal Society report (Royal Society, 2012), 
was that computing should be more than just programming. Computational 
thinking was placed at its heart in part to emphasize this, following Wing’s 
definition. Explicit aims include the following:

•	 “can understand and apply the fundamental principles and concepts of com-
puter science, including abstraction, logic, algorithms and data representation”

•	 “can analyse problems in computational terms”

An outline of skill and knowledge progression is set out. For example, at ages 
5–​7, pupils should be able to “understand what algorithms are; how they are 
implemented as programs on digital devices; and that programs execute by 
following precise and unambiguous instructions.” At ages 7–​11, pupils should 
be able to (among other things): “solve problems by decomposing them into 
smaller parts,” and also “use logical reasoning to explain how some simple 
algorithms work and to detect and correct errors in algorithms and programs.” 
At ages 11–​14, pupils should be able to “design, use and evaluate computational 
abstractions,” and “use logical reasoning to compare the utility of alternative 
algorithms for the same problem.” For more on this, see also reference to the US 
curriculum in Chapter 20 and in other countries in Chapter 18.

Computational thinking is increasingly being made a central framework as 
countries update their school curricula. A  review of computing education in 
K–​12 schools across 12 countries (Hubwieser et al., 2015) revealed that com-
putational thinking or algorithmic concepts were now addressed by curricula 
in Germany/​Bavaria, France, New Zealand, Finland, the USA, Israel, Russia, 

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.018
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 02 Mar 2019 at 10:58:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.018
https://www.cambridge.org/core


522

522

Curzon, Bell, Waite, and Dorling

the UK, Korea, Sweden, and India. New Zealand has even called the core 
computing part of their proposed curriculum “computational thinking” (NZ 
Ministry of Education, 2017).

As these ideas are embedded in national curricula from primary school 
upwards, making sure such interventions now deliver practical benefits to the 
students involved is a vital and pressing issue.

17.1.9 � Practical Benefits

One purported benefit of computational thinking skills is that they are the basis 
of being able to program. With such thought processes in place, programming 
becomes easier and better programs are written. However, it is more than just 
about low-​level programming. Many of the same skills apply in designing hard-
ware systems too, and in developing systems at higher levels. Developing main-
tainable, usable, and used software systems needs more than just coding skills. 
Modern computer systems are socio-​technical systems, and the design of real-​
world systems requires an understanding of the wider systems, so development 
of the skills to design such complex computational systems through experience 
is more than just programming.

The explosion of  interest in computational thinking has come about not 
because of  its basis in programming per se, but because of  the argument that 
it is a general problem-​solving skill set and mode of  thought that is desirable 
for more than just programmers or even computer scientists to possess. The 
world is now digital as well as physical, and it is argued that everyone can 
benefit from being able to think algorithmically and understand deeply how 
the digital world works, particularly how it is driven by algorithms. This is 
important as if  you understand how something is constructed, whether phys-
ical or digital, then you have a stronger basis for understanding its poten-
tial uses and its effects on society (Royal Society, 2012, 2017a, 2017b). For 
example, a policy-​maker who understood how GPS algorithms work would 
be in a better position to see how it would transform the way we do so many 
things and to see new possibilities for it, including new cyber-​threats, such 
as it potentially being spoofed. A  hiker would also better understand the 
risk of  losing that signal when entering a deep, narrow canyon. To take a 
different real case, the lives of  several innocent nurses were blighted due to 
such a lack of  understanding (Thimbleby, 2018). In 2018, a UK court case was 
brought against these nurses, accusing them of  negligence and, in particular, 
of  fabricating paper patient records that differed from automated computer 
logs of  tests administered. At the last minute, the prosecution offered no evi-
dence when expert witnesses showed that hospital administrators, police, and 
prosecutors had not understood enough about the way the system worked or 
was used to realize that those computer logs could be inaccurate. Had the hos-
pital administrators understood the algorithms more deeply, they might also 
have procured a more reliable system. It also matters in the sense of  being able 
to contribute to the development of  appropriate algorithmic socio-​technical 
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solutions to problems. Participatory design is a powerful way to develop 
systems that truly work for the people involved.

Thinking about socio-​technical systems as computational systems is a new 
way of thinking about them that is important to anyone who is already oper-
ating in, who could be operating in, or who is interacting with the digital world. 
Note that this is not a point just about using technology or the introduction of 
the term “computational thinking” per se (the introduction of the term didn’t 
represent the point in time when that way of thinking started to exist), but about 
the way of thinking it embodies, which long predates the term, as discussed in 
Section 17.1.4. It matters not just in terms of designing interactive systems or in 
understanding how digital devices work, but also in making informed decisions 
as citizens about ethical issues where we may choose (or not) to place limits on 
how we use computation (such as artificial intelligence in decision-​making or 
self-​driving vehicles).

A more general argument still is that even aside from understanding and 
making the best use of digital technology, thinking of systems explicitly as 
computational systems and of algorithmic ways of doing things can make us 
all more effective in everyday life, whether working in a coffee shop, running a 
factory, or sorting exam scripts. If  we think computationally about the things 
we do, then we can develop more effective ways of working or achieving tasks 
more generally. Whether we call this “computational thinking” or not is merely 
a matter of definition of terms.

Thinking computationally is about more than just problem-​solving:  it 
provides a whole new way of thinking. Millican and Clark (1996) and Millican 
(n.d.), for example, argue that new modes of explanation based on the ideas 
stemming from Turing have had a revolutionary impact on philosophy and the 
intellectual world more generally, providing a new algorithmic mode of explan-
ation. This is one basis for the idea that computational thinking is of use for 
all. There is “clear potential for algorithmic explanation in such fields as psych-
ology, politics, sociology, and economics” (Millican, n.d.) as well as the trad-
itional sciences. This is as big a revolution as those of Newton or Einstein on 
our modes of thought.

These reasons apply whether for scientists, lawyers, artists, or politicians. It 
provides a new lens through which to look at (and understand) the world and 
so craft new ways of  doing things, new ways of  working. Taking law as an 
example, Susskind (2017) makes the case that lawyers must “start to innovate, 
to practice law in ways that we could not have done in the past,” in part 
due to computing innovation. Lawyers who can drive this themselves and 
even directly contribute rather than relying on computer scientists will have 
a big advantage. “We require a new cadre of  self-​sufficient legal technologists 
whose impact on modern society will be profound.” He outlines a range of 
future careers for lawyers with computer science skills, including systems 
engineering and programming, and suggests a computer science degree will 
be one future route to becoming a lawyer. Such lawyers of  the future will need 
computational thinking skills as well as legal skills in order to both see and 

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.018
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 02 Mar 2019 at 10:58:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.018
https://www.cambridge.org/core


524

524

Curzon, Bell, Waite, and Dorling

grab opportunities. Similar arguments to Susskind’s apply across the spec-
trum of  professions.

The way science is conducted has already changed profoundly. In the past, 
science was moved forward by theory  –​ rigorous thinking about the possibil-
ities  –​ and empirical experiment in the real world. There is now a third way. 
Phenomena of interest can be modeled algorithmically: theory is encoded with 
algorithmic rules. The phenomena can then be explored through simulation or 
proof. Virtual experiments can be performed on the models created, exploring the 
consequences of the rules, including emergent properties. This can be compared 
with the results of experiments. If  the results differ, then it suggests the rules, and 
therefore the underlying understanding, need further refinement. It also leads 
to prediction for real experiments. It can thus drive both theory and empirical 
research, and it applies even to massively complex systems such as the climate.

Computational modeling dates back to some of the earliest uses of computers, 
where complex calculations were needed to understand phenomena. The early 
EDSAC (Electronic Delay Storage Automatic Calculator) family of computers 
contributed in this way to the work of three Nobel Prize winners, in Chemistry, 
Medicine, and Physics. John Kendrew and Max Perutz credited it for the dis-
covery of the structure of myoglobin, Andrew Huxley for work on understanding 
the way nerves function, and Martin Ryle for work in radio astronomy. All 
acknowledged EDSAC in their Nobel Prize speeches. The astronomer, Joyce 
Wheeler, also used EDSAC to investigate the nuclear reactions that keep stars 
burning. Computational modeling of the weather by Edward Lorenz led to the 
observations that small changes to inputs led to widely differing results. This 
ultimately led to the development of chaos theory, showing how computational 
modeling can contribute to whole new theory. Now, computational modeling is 
a standard approach across science.

This idea is closely tied to that of Papert (1980) that computational methods 
could be used as the basis for learning mathematics and other subjects (see 
Chapter 19). Simulation can be used to explore and understand subjects that are 
new to the learner. Application of computational thinking by learners in non-​
computing subjects, such as in mathematics, economics, or physics, to find math-
ematical solutions to problems at different levels of abstraction (i.e., algorithms 
and then computer code) is a demonstration of how computational thinking 
skills can lead to deeper, more meaningful learning. A similar approach can be 
used in biology (e.g., by coding the behavior of ants laying and following trails, 
which can lead to a deeper understanding of that behavior as a learner).

17.2 � The Elements of Computational Thinking

While there are differing views as to the details, there is a lot of agreement 
at least as to the core elements that make up computational thinking: algorithmic 
thinking, logical thinking, abstraction, generalization, and decomposition, for 
example, are generally agreed to play a part (Selby & Woollard, 2013). A range 
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of other aspects have also been suggested, including recursive thinking, pattern 
matching, representation, heuristic thinking, scientific thinking, probabilistic and 
statistical reasoning, understanding people, concurrency and parallelism, and 
attention to detail. We discuss the core, uncontroversial elements in depth here. 
Many other aspects are arguably sub-​skills of, or closely linked to, these core 
elements. For example, recursive thinking can be thought of as an advanced form 
of decomposition. In the examples given below, the skills described draw upon a 
combination of the core elements –​ particularly generalization, decomposition, 
and abstraction. Other definitions (e.g., Google, n.d.; ISTE/​CSTA, 2014) are in 
part different because they group the separate aspects differently, such as pulling 
out pattern matching as a separate skill from generalization or linking abstrac-
tion and decomposition together as a single core element.

17.2.1 � Algorithmic Thinking

Algorithmic thinking is the idea that solutions to problems are not limited to one-​
off answers like, “The vending machine will give a $5 and $10 note as the change,” 
but rather are algorithms that can give answers whenever needed for general 
cases: instructions that, if followed blindly and precisely, are guaranteed to lead 
to an answer, such as, “Here’s how to work out the notes and coins to give if you 
buy an item worth x dollars and give the vending machine y dollars.” If a person 
can express the solution to a problem as a general algorithm that will solve it for 
all cases, then they have shown a deeper understanding of the problem than other-
wise. It is possible to be able to do related tasks without that deeper understanding 
of the algorithm. For example, most people can give correct change, but articu-
lating the process exactly (see if the largest note is too much, if not, give one out, 
then …) is quite difficult to do. This is akin to the fact that people can catch a ball 
without being able to explain the laws of gravity. If a student writes an algorithm 
that another person can follow or implements an algorithm as a program that 
works correctly for any input (such as giving change for any amount of money), 
then they have demonstrated that they do deeply understand the process.

An important issue in creating algorithms, and therefore algorithmic thinking, 
is in trying to get the most efficient algorithm for the job, where this could, for 
example, mean the fastest or alternatively the least memory-​hungry algorithm. 
Often the best answer involves trade-​offs in choosing between algorithms, rather 
than there being a single right answer.

A key part of algorithmic thinking, given Turing’s result on the essence of 
computation and Turing completeness (Böhm & Jacopini, 1966; Aho, 2012), 
is that a computational thinker can give instructions making use of all three 
of sequence, selection, and iteration. Without this basic minimum, one cannot 
claim to have a true grasp of computation. Because these “big three” define 
everything that computational devices can do in terms of flow of control, having 
an understanding of them opens the full power of computation. It also defines 
the limits of computation and underpins our understanding of what computers 
can’t do (Harel, 2003).
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Algorithmic thinking is the core part of the computational thinking skill set 
that makes it different from the thinking skills of other disciplines such as sci-
entific thinking, mathematical thinking, design thinking, and so on where the 
other building blocks of computational thinking arise. Computing overlaps 
and draws on many other subjects. The core of computing is centered around 
algorithms, however. Similarly, computational thinking draws on and overlaps 
with other problem-​solving approaches from those disciplines. In this sense, 
algorithmic thinking is the defining part that makes it different. However, on 
its own, algorithmic thinking is not enough to be generally useful as a way of 
problem-​solving (unless one subsumes all of the other aspects into the term 
“algorithmic thinking”).

17.2.2 � Logical Thinking

Being able to think logically is a core skill that underpins all versions of 
computational thinking. Logic underpins the semantics of  programming 
languages, and thinking in a logical way is needed to develop algorithms, 
to implement these as programs, and to verify whether or not they work 
correctly, either informally or formally. Computer scientists developing 
algorithms need to be able to think through a problem, being sure that 
their solutions cover all possibilities that might arise and that they are 
guaranteed to always give the correct solution. Of  course, with the advent 
of  machine learning approaches, this becomes a question of  probabilistic 
reasoning, rather than pure logical reasoning (see Chapter 20). At one end 
of  the logical thinking spectrum lies simply thinking clearly and precisely, 
including avoiding errors and with attention to detail. At the other end lies an 
ability to reason about algorithmic solutions using formal logic. In between 
lies being able to put together rigorous arguments based on deductive or 
inductive reasoning. While formal reasoning in logic is a core aspect of  com-
puting, few computer scientists learn to do it well, so what usually seems to 
be meant by commentators in the context of  computational thinking is the 
less rigorous versions. Formal logical reasoning is, however, a sophisticated 
aspect of  computational thinking that is certainly desirable for programmers 
and can be considered a part of  the highest levels of  progression in compu-
tational thinking skill.

17.2.3 � Abstraction

Abstraction is the process of simplifying and hiding detail to get at the essence 
of something of interest. As part of computational thinking, it provides a way 
to manage complexity in order to make problem-​solving easier and allow truly 
massive computational systems to be designed. By building in levels of abstrac-
tion, the fine details of lower levels can be ignored when working on higher 
levels. Once you have logic gates, you can ignore the details of transistors. Once 
you have a computer architecture, you can ignore the details of logic gates, 
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and so on. Once you have a programming language, you can ignore assembly 
language, which itself  allowed you to ignore machine code. This is a core skill 
underpinning the way that the subject of computing has developed. It is also a 
core skill of computer scientists because without it, building the immensely large 
and complex systems that we now rely on is intractable. It is only by building in 
layers with clean interfaces between them that complex systems can be built, so 
that the complexity of each new layer is simple once the complexity of the lower 
layers has been hidden by the interface. A course has even been given where 
students build all of the layers of abstraction one at a time, starting with logic 
gates, and ending up with a working program running on an operating system 
(Schocken & Nisan, 2004). Such an endeavor is made possible by breaking it 
into 12 levels of abstraction.

Computer scientists make use of a wide variety of forms of abstractions both 
in programming and in system design more generally. These include control 
abstraction, which is the core of developing programs based on procedures and 
functions, and data abstraction, which is the core idea behind building complex 
data types from simpler ones.

Being able to think at multiple levels of abstraction and move between levels 
is a key ability. This is needed as one develops solutions, moving back and 
forth, for example, between the level of the problem, design levels, and pro-
gramming levels. Linked to this is being able to view systems through different 
abstractions: the bus map intended for passengers may not, for example, include 
locations and times where drivers swap as their shifts start and end, whereas the 
abstract version for drivers would have very different information.

Abstraction is not just important for building systems, but also for the devel-
opment of theory. For example, O-​notation focuses on critical operations rather 
than all operations or processor cycles. Hiding that detail allows us to reason 
effectively about the efficiency of algorithms. Abstract models of computation 
(such as Turing machines, finite-​state machines, and random access models) 
allow us to understand computation itself, including its limits.

17.2.4 � Generalization

Generalization involves taking the solution to a problem and creating a more 
general version that is applicable to a wider set of problems. In a computational 
thinking context, this is first and foremost applied to algorithms. Having come 
up with a way to solve a specific problem, can the details be abstracted away to 
give a more general algorithm that is not just specific to that problem?

At a simple level, a sequence of instructions that are applied repetitively can 
be generalized to a loop. A  more sophisticated generalization is to develop 
general-​purpose functions. For example, if  there are several situations where the 
user enters a date, a function could be developed once and for all that allows the 
user to do this, verifying that it is valid. A more general version of the function 
might have parameters that restrict the range of dates (e.g., a booking website 
would not allow a user to enter a date in the past). Generalization can be applied 
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to both problems and solutions. For example, the problem of listing the top ten 
scores in a game could be generalized to creating a list of any number of scores. 
A possible solution –​ sorting the scores into order –​ could be generalized to a 
procedure that will sort any list of values into ascending or descending order.

Generalization is closely related to pattern finding (another idea that is often 
given as an element of computational thinking). When a pattern is noticed 
either in a program or in data, there is an opportunity to express it more gener-
ally by capturing the pattern rather than the specific case. For example, students 
might use a programming language to draw a square by giving the sequence of 
instructions “turn right, forward ten steps, turn right, forward ten steps, turn 
right, forward ten steps, turn right, forward ten steps.” This could be generalized 
by a loop that repeats the two-​instruction pattern four times; and that in turn 
could be generalized to draw polygons by changing the number of repetitions 
and the angle of the turn.

Generalization skills do not just apply to programming, but also to problem-​
solving more generally. Whether or not the ultimate intention is a program, gen-
eralizing a problem or situation in the same way can, for example, lead to a 
deeper understanding of that problem or situation, which may be important in 
its own right.

17.2.5 � Decomposition

Decomposition is the idea that to solve a complex problem, including writing 
a complex program, it can often be broken into smaller parts that can each be 
solved separately and much more easily. This is closely connected to control 
abstraction. The simplest forms are task-​based, or procedural, decomposition. 
For example, if  one is creating a robot face that shows “emotions” through 
expressions, one could break the problem into that of solving each whole task 
(i.e., how to present each emotion). Program a happy face first, then separately 
program a sad face, and so on.

A different take on decomposition is to focus on the real-​world problem or 
context, focusing on the real-​world objects making up the system to be modeled 
and splitting the problem into one of modeling each of those aspects separately. 
This leads to an object-​based decomposition. Taking the same example of pro-
gramming a robot face, one could instead decompose the problem into that of 
programming a mouth for all emotions, then separately programming an eye, 
and so on. Object-​based decomposition potentially provides a higher level of 
structuring than a procedural decomposition.

Another focus of decomposition can be on the processing of data structures. 
Rather than process the whole of a data structure, it can be split into parts and 
either the same or different algorithms can then be developed for processing 
those parts.

Decomposition links to generalization in that if  we can decompose a problem 
into subproblems that generalize to ones that we have solved before, then we 
can just take those sub-​solutions and reuse them. Abstraction means we do 
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not have to worry about how those sub-​solutions work, just that they solve the 
given subproblem. This leads to more sophisticated forms of  decomposition 
and, in particular, recursive and divide-​and-​conquer problem-​solving.

17.2.6 � Evaluation

Evaluation is a potential element of  computational thinking. However, there 
is no complete consensus on its inclusion. Practically, it is clearly an important 
part of  any problem-​solving approach. It is also very clearly a vital part of 
the skill of  programming, where more time is typically spent testing solutions 
than writing code itself. The contentious issue is simply whether it should be 
considered as a part of  “computational thinking.” For example, Berry (2014), 
who takes computational thinking to be “looking at problems or systems in 
a way that considers how computers could be used to help solve or model 
these,” omits evaluation from his description of  computational thinking for 
primary schools. Selby and Woollard (2013), however, identified it as one of 
the more widely claimed terms that are used in relation to computational 
thinking in a survey of  educators and other experts. That in itself  does not 
mean it should be part of  a definition, just that it is widely accepted as being 
so. It was consequently included in the UK Computing at School definition 
(Csizmadia et  al., 2015). This is just one example of  the different ways of 
defining computational thinking.

One argument for its inclusion is that unlike in school mathematics problem-​
solving, where an answer is right or wrong, in computing there are lots of ways 
to achieve the same result, some of which are better than others. Importantly, 
coming up with a solution requires trade-​offs to be made (e.g., with respect to 
speed and memory usage). Evaluation of whether requirements are met (beyond 
just producing correct answers) matters. Programmed solutions may technically 
meet a functional specification, but be unfit for purpose because they are too 
slow or don’t scale. This might also be due to usability or user experience issues. 
Evaluation of whether solutions are fit for purpose therefore has to be a core 
part of any successful computing-​related problem-​solving approach. If  com-
putational thinking does not include elements of evaluation, it would be only a 
partial approach for computer scientists.

17.2.7 � Computational Modeling

Some of the apparent differences between authors over the definition of compu-
tational thinking are really just to do with what one considers to be the top-​level 
skills. For example, we have argued that computational modeling is a key com-
puting approach that has changed research and development in other subjects. 
As such, modeling is an important aspect of computational thinking. Denning 
(2017) proposes it is an absolutely central component. Computational modeling 
can be thought of as a separate topic or as one aspect of algorithmic thinking 
where it is applied to problems that can be simulated.
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On the other hand, computational modeling applies not just to simulation 
approaches (so programming solutions). At higher levels of abstraction, it can be 
used with models that are not executable. One can do proof and model checking 
of appropriately designed computational models too. This leads to similar ends 
as with programmed simulation models, but allows exhaustive experiments to 
be conducted. This is an example where computational thinking is potentially 
about much more than the skill of coding. It leads to the application of verifi-
cation tools and techniques rather than programming ones, and applying them 
to the understanding of the world too. These tools require models to be written 
in formal logical languages with an axiomatic basis (e.g., Peano’s axioms) rather 
than programming languages with a model of computation as their basis, but 
otherwise the issues are similar –​ we are just working at a higher level of abstrac-
tion. The more sophisticated logical thinking skills mentioned above –​ working 
with formal logic –​ are needed here. The use of such tools and thinking is a part 
of formal program development for safety-​critical systems, so any definition 
of computational thinking as being about the wider development of programs 
rather than narrowly as coding should include it.

17.2.8 � Expressing Algorithms in Formal Languages

None of  the computational thinking concepts above explicitly addresses the 
step of  writing actual code (i.e., expressing the algorithm in a precise syntax 
that has a detailed, formally defined semantics). A student may have developed 
a design including algorithms in a loose pseudocode or in a flow chart lan-
guage, but it is another step  –​ and another skill  –​ to be able to implement 
this as code in a specific language correctly. This often seems to be implicitly 
assumed by commentators, rather than explicitly stated. If  computational 
thinking is the skill of  developing programs, then expressing an algorithm as 
code must be part of  the computational thinking skill set. This transition from 
a logical design to a physical implementation is part of  the ability to work 
at multiple levels of  abstraction. This is more than just about programming, 
though –​ expressing an algorithm precisely needs a level of  rigor, and more 
formal pseudocode-​ or logic-​based specification languages require similar skills 
in using formal language precisely. Guzdial (2008) explicitly discusses issues 
around this skill. For example, there are higher-​level issues to be explored, 
such as the way people naturally omit certain steps, like else cases, from formal 
descriptions. A separate issue again, beyond having mastery of  the language 
constructs, is having mastery over their pragmatic use to best develop readable 
and maintainable code. Machines must be able to follow code, but humans 
must be able to understand it.

17.2.9 � A Holistic View

In practice, computer scientists use mixtures of these separate skills at different 
times, and when combined they are much more powerful than alone. For 
example, thinking in terms of layers of abstraction to decompose a problem 

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.018
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 02 Mar 2019 at 10:58:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.018
https://www.cambridge.org/core


Computational Thinking 531

531

and drawing on previous generalized solutions makes it much easier to create 
algorithmic solutions to problems. Understanding the separate elements is 
important. However, it is also important that this holistic aspect is understood 
too, not just the individual skills. Educators need to consider how best to help 
students develop both of these elements and how to develop the skill of com-
bining the separate parts into computational thinking as a whole. In practice, 
most lessons and activities will use a range of the skills at the same time.

17.2.10 � Links to the Skill Sets of Other Disciplines

Is computational thinking something new and totally different from thinking 
and problem-​solving in other subjects? Computing itself  emerged from a range 
of subjects, including mathematics, engineering, design, and the social sciences. 
Likewise, computational thinking builds on problem-​solving and modes of 
thinking from other subjects. Generalization, decomposition, abstraction, 
logical thinking, and other components all play important parts in other discip-
lines. It draws on design (“the ultimate goal is computational design” [Denning, 
2017], and interaction design is also a key part of making usable systems), math-
ematics, scientific methods (e.g., in evaluation A/​B testing, virtual experiments, 
etc.), engineering methods, and general problem-​solving methods.

There is no reason why computational thinking has to be totally unique in 
order to be an important concept and skill. If  it were to be no different from 
other problem-​solving skill sets, then that is an argument for the importance of 
teaching it to all. However, as argued, from a philosophical point of view, it has 
led to a seismic change in modes of thought. The difference is ultimately in the 
importance placed on algorithms in the skill set and how the separate skills used 
in other disciplines apply to algorithmic thinking, not the elements themselves. 
Algorithmic solutions in turn lead to the possibility of programmed solutions.

17.3 � Research: What Is Known

There has been increasing research in how to teach and assess compu-
tational thinking explicitly, especially since the 2006 revolution. This has built 
on earlier work on teaching computer science and programming, given that even 
without the name, the component skills were still being taught, if  implicitly. 
There has been an explosion of interest on the back of Wing’s work, culmin-
ating in 2017 with a new international conference series being launched with a 
sole focus on computational thinking education (CSE, 2017). This bodes well 
for the future as researchers investigate the best ways to teach different aspects, 
their actual effects on student learning and skills, and whether there is general 
benefit to be had or not, divorced from programming skills. However, care has 
to be taken in that different authors often use their own interpretations of what 
computational thinking is across the full range of possibilities discussed and 
more, so results are not necessarily about the same thing. We overview some 
major themes in the existing research below.
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17.3.1 � Unplugged Computational Thinking

Unplugged activities (Bell, Rosamond, & Casey, 2012) have long been success-
fully used at all levels, from primary to master’s levels, as well as when teaching 
adult teachers, as a way to teach programming and computing concepts more 
generally in constructivist ways. This covers a variety of techniques, including 
role-​playing, puzzles, games, and magic, to illustrate concepts (Curzon & 
McOwan, 2017). These activities often help develop computational thinking in 
its widest sense too. Activities can also be used to explicitly illustrate the high-​level 
elements of computational thinking, like decomposition, generalization, and 
abstraction. Teaching London Computing (http://​teachinglondoncomputing.
org), the Digital Schoolhouse (www.digitalschoolhouse.org.uk), and the lesson 
plans on csunplugged.org, for example, make these opportunities explicit across 
a wide range of cross-​curricula activities.

Curzon (2014) argues that the core ideas of computational thinking can be 
explained in powerfully memorable ways using a combination of contextually 
rich stories and unplugged activities. He gives example activities embedded in 
such stories that have successfully been used. Examples given include stories 
concerned with helping people with locked-​in syndrome, using games and role-​
play, and the design of medical devices using magic trick-​based activities. These 
ideas are expanded upon in Curzon and McOwan (2017). This approach has suc-
cessfully been used as part of continuous professional development for teachers. 
A series of workshops given following this approach had shown strongly posi-
tive evaluation results (Curzon, 2014; Meagher, 2017).

However, much of the work on unplugged approaches is anecdotal and 
much more research is needed, including on the important issue of how such 
approaches are linked to programming itself.

17.3.2 � Computational System Design and Programming

Computational system design involves a wider set of activities than program-
ming, and those activities include computational thinking elements. When 
analyzing the requirements and designing the solution, the task is broken into 
manageable parts to attend to, and so decomposition is used; at each stage of 
increasing exploration of the task, abstraction is needed to work at an appro-
priate level of detail, and so on. Research on effective teaching of overall design 
processes is therefore relevant. Here, we focus on research where there are links 
between computational thinking ideas and programming.

McCracken et al. (2001) describe a five-​step process for problem-​solving that 
learners should use to aid computational design. These fives step map to the 
computational thinking core concepts of Selby and Woollard (2013):

	1.	 Abstract the problem from its description (abstraction)
	2.	 Generate subproblems (decomposition)
	3.	 Transform subproblems into subsolutions (generalization and algorithmic 

thinking)
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	4.	 Recompose (algorithmic thinking)
	5.	 Evaluate and iterate (evaluation)

However, McCracken et al. (2001) highlighted that few students were able to 
use this process and noted that students appeared “clueless.” Lister et al. (2004, 
2011) and Lopez et al. (2008) highlight the importance of being able to read 
and trace code as precursors to the problem-​solving skills needed to write code, 
so these may be precursors to any form of programming-​based computational 
thinking. For example, this suggests that before one can do functional abstrac-
tion, one needs to be able to read and trace existing code that uses such abstrac-
tion. A precursor to that is understanding the basic concepts and their semantics.

Fuller et al. (2007) identified 11 programming skills needed by students, and 
mapped them to Bloom’s taxonomy, presented in a matrix format. For example, 
the ability to debug requires “application” and “analysis” thinking skills. Each 
of the 11 skills is underpinned by the computational thinking core elements 
discussed above. For example, tracing and adapting code develop evaluation 
and generalization skills. Designing and modeling solutions (as algorithms and/​
or programs) develop algorithmic thinking, abstraction, and evaluation skills 
(Sentance & Csizmadia, 2017). Developing the computational thinking skill 
appears to provide a foundation for the corresponding programming skill.

Computational thinking skill is not the only thing needed by programmers, of 
course. They also need to understand the syntax of the language they are using 
as well as the programming constructs available to them in order to implement 
the design. This leads back to some of the earlier extensions discussed, as it 
implies that issues to do with language concepts and terminology are precursors 
to computational thinking.

17.3.3 � Abstraction

Abstraction is a particularly important pillar of computational thinking and 
has attracted specific attention. An important question now that computational 
thinking is part of school syllabuses is: How young can you start to learn about 
abstraction? It is sometimes suggested that Piaget’s work implies that children 
cannot learn about abstraction until they reach a particular age and stage of 
development –​ that of formal operational at around the age of 12. The National 
Research Council report on computational thinking (National Research 
Council, 2011) asked for a review of this. However, Piaget himself  suggested 
that children use abstraction from before the age of two and that abstraction is 
used continuously when learning “without end and especially without an abso-
lute beginning” (Piaget, 2001, p. 136).

Armoni (2013) pointed out that abstraction, as part of the process of 
developing programs from solutions, is hard to teach. She suggested a “level of 
abstraction” framework and gave guidelines for teaching abstraction. Several 
authors have argued that programming ability can be developed by explicitly 
focusing students on abstraction, particularly different levels of abstraction, as 
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part of the process of writing programs. This has been considered both with 
respect to tertiary institution students (Aharoni, 2000; Cutts et al., 2012; Hazzan, 
2003) and school students (Armoni, 2013; Statter & Armoni, 2016; Waite et al., 
2016, 2017). Cutts et al. (2012), for example, argued that focusing on a model 
of three levels of abstraction helps students develop their programming ability. 
Their levels were: English descriptions, computer science speak (i.e., a halfway 
house such as pseudocode, where some of the terminology of code, like vari-
able and procedure names, is embedded in English phrasing), and code. Statter 
and Armoni’s (2016) model is similar, but with four levels: the statement of the 
problem, its description as an algorithm or design level, the program itself, and 
finally the concrete execution of that program. Grade 7 students who were expli-
citly taught these different levels did focus more on the algorithm level in their 
descriptions. Thus, explicitly teaching about abstraction, even with a simple set 
of levels, can help the development of programming skill.

17.3.4 � Assessment

A critical research area is how to assess computational thinking (see also 
Chapters 10 and 14). Denning (2017) suggests that it should be assessed as a skill, 
with others focusing on knowledge frameworks such as those of Computing at 
School (Csizmadia et al., 2015) and K12CS (https://​k12cs.org). However, skills 
and knowledge coexist and, in particular, conceptual computer science know-
ledge, computational thinking skills, and programming skills can and should 
coexist. As with programming itself, assessing it as a skill does not preclude the 
pedagogical importance of assessing understanding of knowledge too. Having 
a strong conceptual knowledge of a discipline can also support the development 
of related skills –​ if  you understand how a gearbox works, learning the skill of 
changing gears in a car can be easier. Similarly, if  you have a deep understanding 
of the concept of abstract data types, then using that form of abstraction in 
programs is easier. Knowledge helps refine skills as you know more of what you 
are trying to do and why.

A variety of researchers have explored ways to assess computational thinking 
as a skill. This could be done by assessing the individual component skills or by 
assessing computational thinking as a holistic single skill. One approach is to 
directly assess the skills based on evidence in programs. If  programming is seen 
as the whole point, then the idea is that computational thinking can be assessed 
by the quality of the programs that a student produces. Another approach is 
to assess the skills using more general problems at a higher level of abstraction 
than that of writing programs. We provide an overview of some of the research 
on these topics below.

17.3.4.1 � Assessing Computational Thinking through Programming

Several automated approaches have been suggested to assess computa-
tional thinking based on evaluating programs. For example, both Dr. Scratch 
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(Moreno-​León, Robles, & Román-​González, 2015) and Seiter and Foreman’s 
(2013) “Progression of Early Computational Thinking” (PECT) model are 
applied to Scratch programs to assess primary-​aged students’ development of 
computational thinking skills. These approaches are based on the idea that com-
putational thinking skills should ultimately be evident in programs written. As 
such, they may therefore not assess more general application of the skills and 
are dependent on sub-​skills concerned with actually embodying an algorithm in 
a formal language.

PECT (Seiter & Foreman, 2013) aims to combine direct measures of programs 
with broad design patterns that are linked to computational thinking concepts. 
Seiter and Foreman applied PECT to 150 Scratch projects of primary students 
of differing ages, concluding that it showed that progression in students’ skills 
improved as they got older.

Seiter (2015) has also used the Structure of Observed Learning Outcomes 
(SOLO) taxonomy (Biggs & Collis, 1982) to give insight into computational 
thinking ability as embodied in Scratch programming. This was based on how 
well students could understand the structure of the problem. It focused on 
such things as their ability to synchronize the costumes and motions of single 
and multiple sprites. However, the low numeracy and literacy of some students 
meant that those students could not understand the tasks at all. Seiter concluded 
that students above this level can understand multiple concerns and incorporate 
them into a single script. They can also synchronize a single concern between 
more than one script. However, synchronizing many concerns across many 
scripts was a challenge.

17.3.4.2 � Assessing Computational Thinking through Problem-​Solving

An alternative to basing assessment of computational thinking skill on programs 
is to assess proficiency at more general problem-​solving tasks. Several authors 
have aimed to do this based on Bebras (Dagiene & Futschek, 2008). Bebras is an 
international competition with questions on both computing concepts and com-
putational thinking skill. Hubwieser and Mühling (2014) suggested that Bebras 
tasks were suitable as an international benchmark test for computing ability 
in the style of the Programme for International Student Assessment (PISA) 
tests. They give a methodology for finding and validating groups of questions 
that measure specific competencies. Such an approach could be used to iden-
tify problems that test specific computational thinking competencies. Dagienė 
and Sentance (2016) give recommendations on how Bebras tasks can be used 
to develop and assess children’s computational thinking skills specifically. They 
created an explicit two-​dimensional classification scheme for questions (Dagienė 
et al., 2017). Computational thinking aspects act as one dimension and content 
knowledge as the other.

Project Quantum (Oates et al., 2016) is a crowdsourced multiple-​choice com-
puter science question bank being pioneered in the UK to provide formative 
assessment. Quality assurance is integral via a feedback loop based on big data 
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that will be generated from its expected widespread use. Questions are machine-​
markable and algorithms will generate data about the quality of questions. 
Bebras questions are one of the sources used, and so this could be a way of deter-
mining and/​or improving the quality of the computational thinking questions, 
ultimately generating a large, quality-​assured set of questions.

Several other specific “computational thinking” tests have been developed. The 
“Computational Thinking Test” (CTt) (Román-​Gonzáles, 2015) is a multiple-​
choice questionnaire involving 28 questions, such as whether a particular 
program will lead a character along a given maze path. It tests understanding of 
programming concepts such as loops and conditionals. Korkmaz, Çakirb, and 
Özdenc (2017) similarly developed a set of 29 five-​point Likert scale questions 
to assess computational thinking. Tested on over 1,000 students, the authors 
concluded that it is a valid and reliable tool for measuring computational thinking 
skills. Brennan and Resnick (2012), however, suggest that assessment requires a 
combination of approaches. They used an analysis of projects, artifact-​based 
interviews, and pupils completing design scenario challenges. They concluded 
that this triangulation leads to an understanding of computational thinking 
concepts and practices, but that these approaches do not effectively reveal 
changes in expressing, connecting, and questioning perspectives.

17.3.4.3 � Determining Progression and Age-​Appropriate Curricula

Designing assessment requires both an understanding of what is to be 
assessed and a methodology for capturing the specific knowledge, skills, and 
understanding at a point in time. In school, teachers develop lesson activities to 
teach objectives for learners that help them make progress. What those objectives 
are and how one might move from one objective to another to provide progres-
sion matter as computational thinking is brought into the school curriculum.

Dorling and Walker (2014) interpreted the English curriculum in the form of 
an easily digestible table. This table presented the learning statements by either 
topic area taken from the Computing at School Curriculum for Schools docu-
ment (Computing at School, 2012) or by subject strands:  Computer Science, 
Information Technology, and Digital Literacy. Dorling, Selby, and Woollard 
(2015) suggested that this interpretation of the curriculum had aligned computa-
tional thinking core elements to all of the statements in the table. A later version 
of the grid was cross-​referenced to the computational thinking concepts outlined 
in Csizmadia et al. (2015). Rich et al. (2017) also consider progression of con-
ceptual ideas and links to computational thinking based on a detailed review of 
over 100 computing education research articles. They use concept maps to show 
progress and also propose an alternative model to the spiral curriculum.

Barefoot (2014a, 2014b), which provides material for primary school teaching 
of computing, suggests ideas for progression in computational thinking for chil-
dren aged 3–​11. However, this is not a complete progression, as it only provides 
suggestions for a limited set of lessons, some set in programming contexts, 
others in a cross-​curricula scenarios.
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Bebras (Dagiene & Futschek, 2008) is also structured by age, using six 
groupings of questions from ages 5 to 19 with the complexity of the problems 
increasing. This is a loose organization, and individual countries can choose the 
questions that they think are appropriate. However, the groups of questions are 
linked to age, and therefore a progression is implied.

Denning (2017) suggests existing progression frameworks are focused on pro-
gression of knowledge and that this is misguided. This is not entirely true –​ as 
noted above, several groups have considered skills-​based progression. However, 
he makes the important point that there are two separate issues: knowledge-​
based progression and skills-​based progression. Both should be addressed. 
Frameworks for progression of both skills and conceptual knowledge within 
subjects are needed, and arguably integrated versions are needed too. Research 
about the appropriateness and effectiveness of progression frameworks is 
needed.

17.3.4.4 � Validity

In all approaches to assessment, validation of the underlying models and/​or the 
tools and techniques based on them is needed. Methods might concern com-
putational thinking as a whole, some specific subset of it, or individual foun-
dational skills. Much research is needed in this area. For example, according to 
Armoni (2013), in 2013, there were no validated methods to assess abstraction 
ability.

An important issue is whether different approaches produce the same 
answers  –​ their convergent validity. Román-​Gonzáles et  al. (2017) explore 
this for three approaches: Dr. Scratch (Moreno-​León & Robles, 2015), Bebras 
(Dagiene & Futschek, 2008) and CTt (Román-​Gonzáles, 2015). Their results 
suggest that CTt partially converges with the other two. They suggest that the 
three approaches are complementary, and they use a revised version of Bloom’s 
taxonomy (Krathwohl, 2002) as a way to classify this. They conclude that 
Dr. Scratch assesses the very top “create” and “evaluate” levels of Bloom’s tax-
onomy, Bebras assesses the “analyze” and “apply” levels, and CTt assesses the 
“understand” and “remember” levels, as it focuses on the concepts related to 
computational thinking rather than the practice of it. In essence, this is saying 
that Dr.  Scratch assesses the programming part of computational thinking, 
Bebras targets more general thinking skills, and CTt targets conceptual know-
ledge of computational thinking.

17.4 � Implications for Practice

17.4.1 � Implications Depending on the View Taken

If  one takes the view that computational thinking is primarily associated with 
learning to program, and it doesn’t directly support learning in other subjects, 
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then the important focus becomes how to teach programming itself  well. 
Studying the component skills can still enhance insight into how to teach pro-
gramming. One such insight is that making students explicitly focus on levels of 
abstraction when programming helps develop programming ability (Cutts et al., 
2012; Statter & Armoni, 2016).

If  one takes the intermediate view expounded by Lee (2016) that computa-
tional thinking is about more than coding itself, but the person concerned must 
have an aim that the resulting algorithm be carried out on a computer, not by 
a human, then the focus is different. The key practical point Lee recommends 
is that repeated practice is needed of working with real-​world problems and 
how they are solved using information processing devices. Practice is needed in 
taking real-​world problems, developing from them statements of the problems 
in a form that can be solved by computers, designing algorithms that solve those 
problems, and implementing those algorithms as programs, specialized hard-
ware, or combinations of the two. This involves both understanding and taking 
into account, from the outset, the actual goals and needs of stakeholders and 
verifying and validating those solutions in the real world.

If  one takes the wide view that computational thinking is a transferable skill 
for all and that algorithms go beyond computers and may be usefully followed 
by humans too (as in the original definition of the words “algorithm” and 
“computer”), the implications are different again. This implies that computa-
tional thinking can and should be developed both through programming and 
through other means. The focus then turns to how to develop the individual 
skills across a wide range of information processing situations, physical and 
otherwise, in computing and other subject contexts. Exploring how best to use 
them together is also critical, so developing the holistic skill matters. Any skill 
is developed with practice: the more, the better. Therefore, students need to be 
encouraged to practice as much as possible, in as many contexts as possible, not 
just programming contexts. In this view, starting to develop general computa-
tional thinking skills, not just programming skills, should start early in primary 
school, as some countries are now doing. Making links from activities such as 
writing clear instructions to early programming tasks is also important.

Whichever view is taken, intrinsic motivation to practice the skills needs 
to be developed (see also Chapter  11). Ensuring such practice is fun and 
engaging is one important element, as is providing realistic context. The edu-
cational community also needs to develop appropriate progression pathways 
for their pupils from primary school upwards that develop and refine the 
skills over time.

Developing the component skills separately provides a foundation for learning 
computational thinking as a whole. Knowledge supports the development of 
skill, and teachers need to understand the barrier concepts and points so that 
they can help students overcome them.

As with any skill, having an understanding of the underlying concepts and 
having the vocabulary to express them by themselves can help develop the skills 
in a reflective way. Therefore, the skills and concepts need to be developed in 
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parallel. Unplugged methods provide a powerful, constructivist way to do this 
at all levels if  used well. The theory of semantic waves (Macnaught et al., 2013; 
Maton, 2013) provides guidance on how to do this –​ as suggested by Curzon et al. 
(2018), one should travel up and down the semantic wave from abstract concepts 
to concrete examples of them (whether unplugged, real world, or programming) 
and back to the abstract ones, making clear the links between the levels.

Whichever view one takes of  the definition of  computational thinking, 
it is important to be pragmatic regarding developing the best ways to teach 
it. Whether one considers computational thinking as something that can 
be developed separately from programming or not, and whether or not it 
includes physical computation in the world, analogies with real-​world ideas are 
powerful ways of  teaching concepts and of  developing skills. According to the 
theory of  semantic waves (Macnaught et al., 2013; Maton, 2013), good explan-
ation involves moving from technical, abstract concepts to concrete illustra-
tion, and then back to technical concepts. This is what good use of  analogy 
and unplugged teaching does. Analogy and simplified explanations are used 
widely across other subjects as effective ways to teach. This should not be lost 
to computing because of  ideology. Ideas such as unplugged teaching should 
not be dropped just because one thinks of  them as only analogy. Instead, the 
fact that they are analogy should be made clear. For example, whether or not 
one believes writing a recipe involves any aspect of  computational thinking, 
a recipe book is still a useful initial way to help students understand concepts 
including breaking a problem down into parts (procedural abstraction) and 
the ordering of  the parts (how the flow of control involved in procedure call 
works). Having such understanding about concepts is a critical foundation for 
learning to program.

It certainly does help to keep the focus on the general value of skills and 
conceptual understanding, even if  very specific examples are being taught; for 
example, students might be learning the syntax of a Python “for” loop, but the 
point is to understand iteration in programs; they might be learning a version 
of binary search, but the wider picture is that it is an example of the power of 
using divide and conquer to decompose a problem.

Also, whatever view is taken, to develop computational thinking skills fully 
does, of course, ultimately involve programming too. This is another kind 
of example that can be used to travel a semantic wave of good explanation 
(Macnaught et al., 2013; Maton, 2013). Ideally, programming skills should be 
developed in conjunction with more general computational thinking skills and 
understanding. For example, the Computing at School Working Group suggests:

Computer Science is more than programming, but programming is an abso-
lutely central process for Computer Science. In an educational context, 
programming encourages creativity, logical thought, precision and problem-​
solving, and helps foster the personal, learning and thinking skills required in 
the modern school curriculum. Programming gives concrete, tangible form to 
the idea of “abstraction,” and repeatedly shows how useful it is.
(Computing at School, 2012)
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17.4.2 � Practical Resources for Teaching

A wide variety of practical resources and tools exist to support the teaching of 
computational thinking. These include:

•	 CS Unplugged (http://​csunplugged.org)
•	 Teaching London Computing (http://​teachinglondoncomputing.org)
•	 Barefoot (http://​barefootcas.org.uk)
•	 The International Society for Technology in Education’s Computational 

Thinking Toolkit (Sykora, 2014)
•	 Google’s Exploring Computational Thinking (Google, n.d.)
•	 Bebras (Bebras, n.d.)
•	 Dr. Scratch (www.drscratch.org)
•	 Digital Schoolhouse (www.digitalschoolhouse.org.uk)
•	 Computational thinking rubric (Dorling & Stephens, 2016)

There are many more such resources and resource collections, with more being 
developed all the time.

17.5 � Open Questions

Computational thinking is still a relatively new idea, and designing cur-
ricula that use it is even newer. There are many open questions, making it a very 
fertile area for future research. The most fundamental open question is just what 
definition of computational thinking should be adopted and how wide it should 
stretch. In the absence of agreement about definitions of the term, those doing 
such research need to be precise about the definition that they are working with.

What definition is appropriate depends to a large extent on the answers to 
more specific open questions. For example, we need to determine the true extent 
of the transferability of the skills (see also Chapter 9, which explores transfer of 
learning). How useful are or can be the skills in practice to learning in other areas 
if  either a narrow or a wide view is taken? Is there a difference in general useful-
ness if  you learn them only as programming versus taking a wider approach to 
teaching them? Are they useful at all? Is knowledge of computational thinking 
useful in understanding the digital world and how? Can computational thinking 
skills be developed effectively outside of programming? How effective are the 
various unplugged methods for teaching computational thinking? For example, 
does early practice using logic puzzles to refine logical thinking skills actually 
lead to better computational thinking skills and so make programming easier to 
learn? Similar issues apply to the other components of computational thinking. 
What makes an effective unplugged computational thinking activity in general 
and what makes them ineffective? How does one best link unplugged and pro-
gramming techniques? Rigorous evidence is needed of what actually does work 
and why.

If  computational thinking is primarily useful for programmers and can only 
usefully be taught through programming, then the question becomes how to 
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enhance those skills more effectively through programming. Even if  they can be 
developed in other ways, this is still an important question. Either way, we need 
to better understand the importance of the conceptual knowledge, program-
ming skills, and computational thinking skills for developing independence 
and resilience in learners. In particular, we need further consideration of the 
relationships between programming skills and the core computational thinking 
concepts. Does a better grasp of computational thinking concepts and subskills 
lead to better holistic computational thinking and programming skills, and if  
so, how best do knowledge and skills combine? It is often suggested that math 
is an important precursor to being able to cope on a tertiary institution com-
puting course. However, it is also often suggested that it is not the math con-
tent that matters. What exactly are those mathematical precursor skills? Perhaps 
it is because math does develop some of the relevant precursor skills, such as 
attention to detail, logical thinking, or abstraction skills (e.g., in algebra). This 
might suggest that teaching the subskills of computational thinking in other 
contexts does help.

Validated progression frameworks are needed for both skills and knowledge. 
What do you teach at different levels from primary upwards to achieve the best 
learning? And how best do you then teach at each level of progression and each 
topic? The questions are not just about how to teach. We need to know what the 
effective means of both formative and summative assessment are too. There are 
very big unanswered questions as to how to assess both programming and com-
putational thinking skills. How are each of the progression levels best assessed 
both formatively and summatively? This applies both to computational thinking 
overall and to the separate subskills, such as abstraction and generalization.

At the moment, arguments are being made and policy implemented based 
on opinion and early results, as there is a lack of evidence. Experiments need to 
be founded in rigorous theories of the mechanisms involved. For many of the 
research areas outlined, some work has been done, though often on a small scale 
and in uncontrolled ways. What is needed is really rigorous evidence around all 
of these issues that is more than just action research suggesting an intervention 
was a positive experience in a single context. Research needs to be replicated, 
including situating the studies in real classrooms, with real teachers, over longer 
periods of time, and on larger scales. We need large-​scale, longitudinal com-
parison of teaching, learning, and assessment of computational thinking across 
schools, cultures, and age groups. We then need continuous professional devel-
opment for teachers and resources to be developed based on the research. This 
material needs to be organized in a validated progression, affording educators 
the means to plan lessons and evaluate students’ progress, allowing students to 
show what they know and can do.
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