
513

513

17	 Computational Thinking
Paul Curzon, Tim Bell, Jane Waite, and Mark Dorling

17.1 � Motivational Context

The term “computational thinking” was popularized by Wing (2006) as
the form of thinking computer scientists practice. Computational thinking has
since been widely accepted and promoted both as the skill set that programmers
develop and as the general thinking skills that should be developed by com-
puter scientists as they learn the discipline. Wing also advocated it as a generally
useful problem-​solving skill set that all should learn. Computational thinking
also arguably offers a powerful way of both thinking and doing across a wide
range of subject disciplines, transforming the way that they are carried out, such
as through the use of computational modeling.

17.1.1 � Computation

Computational thinking is not primarily about the development of electronic
computer systems. It is about computation and the development of systems
based on computation. Computation dates back millennia. The first algorithms
were developed thousands of years before digital computers. One of the earliest,
and most famous, is Euclid’s algorithm (c. 300 BCE; cited in Euclid, 1997) for
computing the greatest common divisor of two numbers. The word “algo-
rithm” derives from the name of the Muslim scholar Muḥammad ibn Mūsā
al-​Khwārizmī and is most closely associated with his work On the Calculation
with Hindu Numerals (al-​Khwārizmī, c. 825). It concerns the algorithms for
doing arithmetic with decimal positional numbers. Computation is not just
about numeric calculation, however. It concerns symbol processing more gen-
erally. Early algorithms, predating electronic computers, include encryption-​
related algorithms that concern the manipulation of letters and other symbols.
Computation does not need to be done by machines, of course. Humans can
follow algorithms, and al-​Khwārizmī’s book was about algorithms for people
to follow. Indeed, the first actual “computers” were people, not machines. The
term was originally used to describe the people tasked with doing the astro-
nomical calculations needed to develop maritime tables for navigation at sea
(OED, 1993). Indeed, Charles Babbage did this job, and it was a motivation
for him to develop machines that could do the calculations automatically.
The developers of these pre-​computer age algorithms were certainly engaged

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.018
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 02 Mar 2019 at 10:58:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.018
https://www.cambridge.org/core

514

514

Curzon, Bell, Waite, and Dorling

in a form of computational thinking, in the sense of solving computational
problems through precise algorithmic solutions.

Turing (1936) famously articulated a formal idea of computation in the
thought experiment of a Turing machine, and a variety of other models of
computation have been devised that have been proved equivalent. These models
define the limits of what computation, and so algorithms, can do. Since compu-
tational thinking concerns the design of computational systems, these theories
give limits on the possible.

Computation is not restricted to the manipulation of abstract symbols. It
can and does happen to physical things in the world that embody information,
and not just inside computer chips (which are embodiments of computation in
the physical world too). Computation in such a computational system involves
information processing through, for example, the movement and transform-
ation of information between different physical objects. This is a core idea
behind distributed cognition (Hutchins, 1995), where the brain is seen as an
information processing agent and cognition is seen as extending to incorporate
such computational systems in the world. Hutchins’ core example is analysis
of the computational properties of ship navigation, exploring how informa-
tion is transformed as it passes between different forms, physical and mental.
This richer view of computation is actually vital in the development of the
modern computer systems that play an increasingly physical role in the world,
augmenting human processes in complex ways.

This view of computation as including movement and transformation of phys-
ical objects means that “unplugged computing,” where physical objects and role
play are used to illustrate computing concepts (Bell, Alexander, Freeman, &
Grimley, 2009; Bell, Rosamond, & Casey 2012), is not just the use of analogy,
but is actually about computation itself. Computational thinking is being done
in devising unplugged computational systems, whether inventing a self-​working
magic trick (an algorithm for a magical effect) as illustrated by Curzon and
McOwan (2017) or devising an activity of searching for numbered balls under
cups using a binary search algorithm. This mirrors real-​world, everyday uses of
computational thinking too, such as when a teacher, presented with a pile of 400
paper exam scripts that must be put in sorted order by ten-​digit student number,
devises a form of radix sorting as an efficient way to do so in preference to using
some variation of bubble sorting. A more forward-​thinking computational
thinker might later redesign the system as a whole, allocating desks to students in
the required order, allowing the students to physically sort themselves and so their
scripts. Even without turning to digital solutions, algorithmic thinking is useful.

17.1.2 � What Is Computational Thinking?

Wing (2006) is clear that computational thinking is about thinking like a com-
puter scientist. It is, however, also a fundamental analytical skill for everyone,
not just for computer scientists. She is also clear that the concept she is defining
is about computing processes, whether they are executed by a human or by
a machine. It is specifically not just the skill of computer programming, but

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.018
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 02 Mar 2019 at 10:58:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.018
https://www.cambridge.org/core

Computational Thinking 515

515

the much wider way of thinking that computer scientists (not specifically
programmers) develop.

There are, unfortunately, now a wide variety of sometimes polarized views over
what computational thinking should be (Denning, 2017; Tedre & Denning, 2016;
Denning & Tedre, 2019). This has led to problems, not least that research studies
use different definitions, often without being clear what they mean by the term.
This diversity of views is largely a result of how successful the original definition
was, resonating around the world. This success has led to it being incorporated
into education systems globally, and this has made its meaning an issue of politics,
with different groups using it with their own definition to fit their own priorities
and agendas. Views mainly differ on the breadth of applicability and the nature
of computational agents (Figure 17.1). Most literature is closer to the middle of
this diagram, but the authors have regularly encountered professionals who argue
strongly for one of the extreme views.

Despite the different views, it is ultimately more useful as an educator to
focus on the agreement, which as Figure 17.1 shows is large, and not worry
which end of the spectrum resonates personally. There is general agreement
around a large central core (see Section 17.3 for a deeper summary) that com-
putational thinking is the way of thinking used to develop solutions in a form
that ultimately allows “information processing” or “computational” agents
to execute those solutions. The computational agent should be guaranteed
to achieve some specified result without further thought or problem-​solving
involved, just by blindly and precisely following the solution. Ultimately,
solutions are not one-​off answers like “the cheapest route is via Hong Kong,”

The skills are the wide ranging
skills computer scientists do
develop, and anyone can develop.

Computational thinking is a skill
that may be used to develop non-
computer based computational
systems.

Computational thinking can be
learned outside programming.

Computational thinking skills can
be developed without using a
rigorous model of computation.

The skill set overlaps
with those of other disciplines
and are generally useful.

Computational systems exist
in the natural world.

Humans and computers can
be computational agents. Computers are

computational agents.

It encourages
attention to detail

and precision in
language.

At the heart of
computational thinking

are skills including, but not
limited to, algorithmic

thinking, logical thinking,
abstraction, generalisation,

decomposition.

Computational thinking
skills develop from

practicing designing
computations.

Computational systems are
most useful when running
on machines because of
their speed and reliability.

Thinking computationally
has had an enormous
impact on the world.

Humans are not
computational agents.

Computational systems
exist in computers.

Computational thinking
means getting computers to
do jobs for you.

The skills are learnt only as a
result of learning to program.

There should be an emphasis
on models in computational
agents.

Computational thinking is not
necessarily useful for
everyone.

Broad applicability Narrow applicability

Humans must act
without making
judgements if they are
to act as computational
agents.

Computational thinking
skills develop by extensively
practicing programming.

Computational
modelling is an

important
component.

Computational
thinking can be
used in other
disciplines.

Figure 17.1  Agreement and disagreement around two views of what
computational thinking should be.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.018
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 02 Mar 2019 at 10:58:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.018
https://www.cambridge.org/core

516

516

Curzon, Bell, Waite, and Dorling

but rather are algorithms that solve a general case (e.g., “find the cheapest
route”). Computational thinking is thus concerned with the development of
systems involving information processing, and it is the focus on algorithmic
solutions that differentiates it from other problem-​solving approaches. There
are different views, however, on what can be a computational agent. It could
be a machine or human (or possibly even an animal or other biological system
if it can follow those instructions precisely and blindly). It could also be a
combination of  both.

Programming relies directly on this skill set, but computational system design
and development is about far more than just coding itself. The development
of higher levels of computational systems relies on these skills, as does innov-
ation in computing more generally. As Wing (2006) notes, “Thinking like a com-
puter scientist means more than being able to program a computer. It requires
thinking at multiple levels of abstraction.”

Although the idea of “computational thinking” has been around for cen-
turies, the term was first used by Papert (1980) as part of his call for a new
approach to teaching mathematics based on computational methods (see also
Chapters 1, 19, 20, and 22). This original definition is about the idea that com-
putational thinking is a way of doing other subjects differently. He suggested it
as part of a teaching methodology for computational environments through the
Logo programming language. In this context, it can be seen more as a novel way
of gaining understanding rather than narrowly about solving problems. It is this
idea that is transforming science and leading to innovation more generally (see
Section 17.1.9). However, it was Wing’s use of the term, not Papert’s, which led
to the concept being widely adopted.

17.1.3 � A “Traditional” View or Not?

Denning (2017) has brought differing views to a head. He identifies what he calls
a “traditional view”. Essentially, this boils down to the idea that computational
thinking should be based on computational models and algorithms that have
definite computational steps. Part of this view is that computational agents must
act like machines (or, at least, well-​defined models of machines) and therefore
are most likely to be encountered by beginners when developing software (i.e.,
developing instructions in formally defined languages for electronic computers
of the kind that currently exist). Denning claims that there is no evidence that
developing programming skills alone extends to more general problem-​solving,
so this justification of computational thinking for all should be dropped, at
least until evidence is produced that it has broader benefits. He argues that the
ultimate goal of computational thinking is computational design. More widely,
its goal is computational systems design.

As many of the concepts that have been espoused as fundamental to the term
“computational thinking” are well known in other disciplines, Denning (2017)
argues that computational thinking should not be given the special status it has
as a general problem-​solving approach.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.018
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 02 Mar 2019 at 10:58:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.018
https://www.cambridge.org/core

Computational Thinking 517

517

Wing (2006), on the other hand, argues that computational thinking is much
more than this. It is both a skill that leads to programming ability and a gener-
ally useful skill. A consequence of this view is that it can be learned separately
from programming. Even if programming does not lead to general problem-​
solving skill, this wider definition of computational thinking that intersects
with other subject views of problem-​solving may lead to more general problem-​
solving skills.

Denning outlines a series of precursors to Wing in discussing the general
skill set developed by programmers and advises we stick to Aho’s more recent
though “historically well-​grounded definition”:

Mathematical abstractions called models are at the heart of computation and
computational thinking. Computation is a process that is defined in terms
of an underlying model of computation and computational thinking is the
thought processes involved in formulating problems so their solutions can be
represented as computational steps and algorithms.
(Aho, 2012, pp. 834–​835)

Denning grounds the skill set of computer scientists firmly in working
throughout with defined models of computation, and rules out calling anything
computation that is not based on such a model. It appears to rule out both
informal demonstrations (such as the classic sandwich-​making exercise where
instructions are followed literally) and working at higher levels of abstraction
without a specific model targeted. However, a major point of thinking at higher
levels of abstraction for a problem means the details (and model) at lower
levels are explicitly ignored, and this skill of working at all levels needs to be
developed. That is part of the power of computational thinking and is certainly
important in creating programs.

17.1.4 � What Is a Computational Agent?

A key question is whether only machines should be classed as computational
agents. If so, this leads to the position that computational thinking is only
concerned with the creation of programs. If so, then arguably there is no need
for a new term of “computational thinking” at all, as programming itself is the
skill set.

Wing and many others since have argued for a wide definition. At the outset,
Wing (2006), for example, stated that computational agents can be humans,
not just machines. This wider view puts the emphasis not on machines or pro-
gramming, but on information processing and the design and understanding
of systems that do such information processing. Humans can and do perform
such information processing, though they are clearly less capable of following
instructions precisely. This is embodied in computing curricula in England and
other countries, and it is because of this wide definition that the idea of com-
putational thinking has become so widespread. It is also the foundation of the
arguments for computing for all and the basis of the resultant push around the
world that it, and not just programming, should be taught in school, not just in

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.018
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 02 Mar 2019 at 10:58:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.018
https://www.cambridge.org/core

518

518

Curzon, Bell, Waite, and Dorling

higher education. A significant reason for this push is because it makes clear that
computational thinking is a useful tool for all to learn, not just programmers. If
it is just useful for programmers as a skill, then there is far less justification for
teaching it to all from primary upwards.

Denning (2017) argues for a narrower definition: that a computational agent
should not involve human judgment. This frames it as a skill for students who
are learning to program, since this is the environment in which a beginner
might encounter such computational agents. He argues that there is no evidence
that this narrow version has any transferable benefits beyond computing itself
and therefore such claims should be dropped. Lee (2016) takes a related view,
arguing that computational thinking is definitely not about creating algorithms
for humans to follow, but that it is more than just programming. She puts the
emphasis on it being about taking real-​world problems and creating abstractions
of them and algorithms that solve them, which are then implemented on
computers.

17.1.5 � An Evolving Definition

Denning, in part, is reacting to the way a range of authors have adapted the
meaning of the term. According to Dagienė et al. (2017), authors that have
further developed the meaning include Grover and Pea (2013), Kalelioglu et al.
(2016), Lu and Fletcher (2009), Selby and Woollard (2013), and Wolz et al.
(2011). These authors have argued that there is a place in the progression of
learning to think computationally for activities that do not necessarily result in
implementing a programmed solution.

For example, Lu and Fletcher (2009), though taking computational thinking
to be about solving problems with computers, explicitly argued that it should
be split from programming in the early years. They argued that the focus
should be on

establishing vocabularies and symbols that can be used to annotate and
describe computation and abstraction, suggest information and execution,
and provide notation around which mental models of processes can be built.
(Lu & Fletcher, 2009, p. 260)

They posited that doing so would lead to students being in a better position,
with such a foundation, to learn both programming and more advanced com-
puting. Their argument is that a computational thinking language (CTL) must
permeate the pedagogy. They give wide-​ranging examples of how such language
and unplugged computational thinking might be developed in an interdiscip-
linary way from US curricula, all concerning the students doing computation,
not writing programs. The focus is on computation and information processing
tasks generally, not on how they are specifically implemented in computers.
Curzon’s practical approach to teaching programming itself, as well as data
structure and algorithms concepts (Curzon, 2002), takes a similar explanatory
approach, teaching programming ideas divorced from writing programs, using

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.018
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 02 Mar 2019 at 10:58:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.018
https://www.cambridge.org/core

Computational Thinking 519

519

wide-​ranging analogies with real-​world processes to explain general computing
concepts, but getting completely away from the syntax and detailed semantics
of a specific language. He advocates the same approach for introducing com-
putational thinking as embodied by the Teaching London Computing website
(http://​teachinglondoncomputing.org).

Selby and Woollard (2013), in searching for an appropriate definition to use in
school education, looked for consensus. They surveyed the literature concerned
with computational thinking and came up with a definition based on the most
commonly agreed-​upon components of computational thinking. Computing at
School (CAS) adopted this basic definition to promote computational thinking
in England (Csizmadia et al., 2015). This is based on the five top-​level categories
that were most commonly encountered and so showed the most consensus from
the research community: algorithmic thinking, abstraction, decomposition,
generalization, and evaluation.

Further evolution of the term may also be needed if “computational
thinking” is taken to be the skill set needed to develop computational systems
in the future. For example, Chapter 20 argues for the need to include more
explicitly the underlying skills needed for new areas such as machine learning,
distributed computing, and quantum computing paradigms. This implies that
not just logical thinking, but also statistical and probabilistic thinking skills will
be needed for the development of computational systems in the future.

17.1.6 � Problem-​Solving, Expression, Creativity, and Communication

Computational thinking is currently mainly associated with problem-​solving,
but this may limit the opportunities for getting the most from it, as well as
limiting those who might be attracted to using it. Bers (2017) links back to
Papert’s call for technological fluency as well as computational thinking
(Papert, 1980), describing technological fluency as when one can express one-
self “creatively, in a fluent way, effortlessly and smoothly as one does with lan-
guage” (Bers, 2008). She sees computational thinking as too associated with
problems and draws out the potential for using it for communication, creativity,
and expression beyond science, technology, engineering, and mathematics
(STEM). This resonates with classroom practice, where students probably do
not see their programs as algorithms that solve a problem, but as instructions
that make something happen. Brennan and Resnick’s (2012) computational
thinking concepts, practices, and perspectives meet Denning’s point about the
link between computational thinking and programming, but they highlight the
importance of expression, connecting, and questioning as a means to “code to
learn” rather than just learning to code (Resnick, 2013). Kafai (2016) advocates
for “computational participation” rather than just computational thinking.
Calling it “participation” allows for more emphasis on community, where code
is written to be shared rather than a disposable exercise, where developing soft-
ware occurs in the context of a community, and where others’ work can be
remixed.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.018
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 02 Mar 2019 at 10:58:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.018
https://www.cambridge.org/core

520

520

Curzon, Bell, Waite, and Dorling

17.1.7 � Pedagogy and Pragmatism

There are two distinct issues in this debate that need to be separated: (1) What
is the skill set involved in computational thinking? (2) How does one take
children on the journey to gain those skills? Teaching is a pragmatic endeavor.
Many subjects are taught using a spiral learning model where “lies to chil-
dren” (misconceptions) are used to simplify concepts in order to make them
accessible at a younger age. Denning and Tedre (2019) highlight that what
computational thinking really is varies by necessity as students progress from
beginner to professional, and that failing to make this distinction leads to
conflict. Whether or not one wishes to take a narrow or wide definition of
computational thinking, there is still a great deal of benefit to be gained by
looking for a simplified progression and taking a constructivist approach,
building on everyday ideas that are already understood. There are good peda-
gogic reasons for doing this. It involves presenting more accessible versions of
computational thinking to younger age groups –​ ones that fudge the details.
A perfectly sensible first step is to work on writing clear instructions with
young primary school students (such as telling a friend how to walk the out-
line of a square, writing recipes, or writing out a dance routine). Later, the
limitations of human instructions such as recipes can be explored, and this can
motivate the need for the more rigorous, formal treatment found in programs.
Foundational concepts can be introduced in this way, then built on and refined
as one progresses through the education system.

Even if analogical approaches are rejected, the issue is not whether there is
a formal model per se, but whether a computational agent, in principle, could
blindly follow the resulting algorithm, and if it did so accurately, whether it
would guarantee the same outcome over and over again. Attempts at creating
algorithms by younger learners are likely to be incomplete, inaccurate, and
clumsy, but as they make progress, precision, completeness, cohesion, and ele-
gance will improve, thereby showing such progression. This will apply whether
one is starting to write programs, recipes, or other instructions for humans. Just
because the young, novice developer has not provided or worked with a precise
model of computation, a mathematical semantic model, or implemented a fully
working, complete computational stack all the way down doesn’t mean they are
not thinking computationally or about computation. Human-​centered software
development also does not start with algorithms and models, but rather with
understanding human and socio-​technical needs. It is only later in good devel-
opment processes that underlying models, precision, and completeness enter
the scene.

Despite issues with definitions, pragmatically, the idea of computational
thinking has proved immensely useful, especially in putting a focus on the
importance of the general skill set of computer scientists, as well as promoting
computing for all in education systems worldwide. It has helped improve the
standing of computing in schools as a rigorous subject that is more than office
IT skills in a variety of countries.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.018
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 02 Mar 2019 at 10:58:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.018
https://www.cambridge.org/core

Computational Thinking 521

521

Whichever definition we adopt, it is clear that programming is a key step in
teaching computational thinking, but also that learners build upon existing
knowledge and skills starting with relevant and familiar contexts. Similarly,
we also need to be aware that becoming a programmer is not the goal for all
students, in the same way that becoming a professional novelist is not the goal
for all those learning to write.

17.1.8 � Changes to School Curricula

A consequence of the push arising from Wing’s seminal article (Wing, 2006)
has been that computational thinking has become a foundation stone of
new syllabuses of computing. It has also provided a useful term to articu-
late changes that were already planned for curricula and enabled curriculum
designers to articulate the broader principles intended in revised curricula.
This has especially avoided the perception that the changes were only about
esoteric topics of interest to programmers or just about developing skills
to groom students for work purely in the software development industry.
For example, the purpose of study of the English National Curriculum for
Computing (Department for Education, 2013), which applies from primary
school upwards, starts: “A high-​quality computing education equips pupils
to use computational thinking and creativity to understand and change the
world.” A key aim, in line with the Royal Society report (Royal Society, 2012),
was that computing should be more than just programming. Computational
thinking was placed at its heart in part to emphasize this, following Wing’s
definition. Explicit aims include the following:

•	 “can understand and apply the fundamental principles and concepts of com-
puter science, including abstraction, logic, algorithms and data representation”

•	 “can analyse problems in computational terms”

An outline of skill and knowledge progression is set out. For example, at ages
5–​7, pupils should be able to “understand what algorithms are; how they are
implemented as programs on digital devices; and that programs execute by
following precise and unambiguous instructions.” At ages 7–​11, pupils should
be able to (among other things): “solve problems by decomposing them into
smaller parts,” and also “use logical reasoning to explain how some simple
algorithms work and to detect and correct errors in algorithms and programs.”
At ages 11–​14, pupils should be able to “design, use and evaluate computational
abstractions,” and “use logical reasoning to compare the utility of alternative
algorithms for the same problem.” For more on this, see also reference to the US
curriculum in Chapter 20 and in other countries in Chapter 18.

Computational thinking is increasingly being made a central framework as
countries update their school curricula. A review of computing education in
K–​12 schools across 12 countries (Hubwieser et al., 2015) revealed that com-
putational thinking or algorithmic concepts were now addressed by curricula
in Germany/​Bavaria, France, New Zealand, Finland, the USA, Israel, Russia,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.018
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 02 Mar 2019 at 10:58:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.018
https://www.cambridge.org/core

522

522

Curzon, Bell, Waite, and Dorling

the UK, Korea, Sweden, and India. New Zealand has even called the core
computing part of their proposed curriculum “computational thinking” (NZ
Ministry of Education, 2017).

As these ideas are embedded in national curricula from primary school
upwards, making sure such interventions now deliver practical benefits to the
students involved is a vital and pressing issue.

17.1.9 � Practical Benefits

One purported benefit of computational thinking skills is that they are the basis
of being able to program. With such thought processes in place, programming
becomes easier and better programs are written. However, it is more than just
about low-​level programming. Many of the same skills apply in designing hard-
ware systems too, and in developing systems at higher levels. Developing main-
tainable, usable, and used software systems needs more than just coding skills.
Modern computer systems are socio-​technical systems, and the design of real-​
world systems requires an understanding of the wider systems, so development
of the skills to design such complex computational systems through experience
is more than just programming.

The explosion of interest in computational thinking has come about not
because of its basis in programming per se, but because of the argument that
it is a general problem-​solving skill set and mode of thought that is desirable
for more than just programmers or even computer scientists to possess. The
world is now digital as well as physical, and it is argued that everyone can
benefit from being able to think algorithmically and understand deeply how
the digital world works, particularly how it is driven by algorithms. This is
important as if you understand how something is constructed, whether phys-
ical or digital, then you have a stronger basis for understanding its poten-
tial uses and its effects on society (Royal Society, 2012, 2017a, 2017b). For
example, a policy-​maker who understood how GPS algorithms work would
be in a better position to see how it would transform the way we do so many
things and to see new possibilities for it, including new cyber-​threats, such
as it potentially being spoofed. A hiker would also better understand the
risk of losing that signal when entering a deep, narrow canyon. To take a
different real case, the lives of several innocent nurses were blighted due to
such a lack of understanding (Thimbleby, 2018). In 2018, a UK court case was
brought against these nurses, accusing them of negligence and, in particular,
of fabricating paper patient records that differed from automated computer
logs of tests administered. At the last minute, the prosecution offered no evi-
dence when expert witnesses showed that hospital administrators, police, and
prosecutors had not understood enough about the way the system worked or
was used to realize that those computer logs could be inaccurate. Had the hos-
pital administrators understood the algorithms more deeply, they might also
have procured a more reliable system. It also matters in the sense of being able
to contribute to the development of appropriate algorithmic socio-​technical

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.018
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 02 Mar 2019 at 10:58:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.018
https://www.cambridge.org/core

Computational Thinking 523

523

solutions to problems. Participatory design is a powerful way to develop
systems that truly work for the people involved.

Thinking about socio-​technical systems as computational systems is a new
way of thinking about them that is important to anyone who is already oper-
ating in, who could be operating in, or who is interacting with the digital world.
Note that this is not a point just about using technology or the introduction of
the term “computational thinking” per se (the introduction of the term didn’t
represent the point in time when that way of thinking started to exist), but about
the way of thinking it embodies, which long predates the term, as discussed in
Section 17.1.4. It matters not just in terms of designing interactive systems or in
understanding how digital devices work, but also in making informed decisions
as citizens about ethical issues where we may choose (or not) to place limits on
how we use computation (such as artificial intelligence in decision-​making or
self-​driving vehicles).

A more general argument still is that even aside from understanding and
making the best use of digital technology, thinking of systems explicitly as
computational systems and of algorithmic ways of doing things can make us
all more effective in everyday life, whether working in a coffee shop, running a
factory, or sorting exam scripts. If we think computationally about the things
we do, then we can develop more effective ways of working or achieving tasks
more generally. Whether we call this “computational thinking” or not is merely
a matter of definition of terms.

Thinking computationally is about more than just problem-​solving: it
provides a whole new way of thinking. Millican and Clark (1996) and Millican
(n.d.), for example, argue that new modes of explanation based on the ideas
stemming from Turing have had a revolutionary impact on philosophy and the
intellectual world more generally, providing a new algorithmic mode of explan-
ation. This is one basis for the idea that computational thinking is of use for
all. There is “clear potential for algorithmic explanation in such fields as psych-
ology, politics, sociology, and economics” (Millican, n.d.) as well as the trad-
itional sciences. This is as big a revolution as those of Newton or Einstein on
our modes of thought.

These reasons apply whether for scientists, lawyers, artists, or politicians. It
provides a new lens through which to look at (and understand) the world and
so craft new ways of doing things, new ways of working. Taking law as an
example, Susskind (2017) makes the case that lawyers must “start to innovate,
to practice law in ways that we could not have done in the past,” in part
due to computing innovation. Lawyers who can drive this themselves and
even directly contribute rather than relying on computer scientists will have
a big advantage. “We require a new cadre of self-​sufficient legal technologists
whose impact on modern society will be profound.” He outlines a range of
future careers for lawyers with computer science skills, including systems
engineering and programming, and suggests a computer science degree will
be one future route to becoming a lawyer. Such lawyers of the future will need
computational thinking skills as well as legal skills in order to both see and

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.018
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 02 Mar 2019 at 10:58:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.018
https://www.cambridge.org/core

524

524

Curzon, Bell, Waite, and Dorling

grab opportunities. Similar arguments to Susskind’s apply across the spec-
trum of professions.

The way science is conducted has already changed profoundly. In the past,
science was moved forward by theory –​ rigorous thinking about the possibil-
ities –​ and empirical experiment in the real world. There is now a third way.
Phenomena of interest can be modeled algorithmically: theory is encoded with
algorithmic rules. The phenomena can then be explored through simulation or
proof. Virtual experiments can be performed on the models created, exploring the
consequences of the rules, including emergent properties. This can be compared
with the results of experiments. If the results differ, then it suggests the rules, and
therefore the underlying understanding, need further refinement. It also leads
to prediction for real experiments. It can thus drive both theory and empirical
research, and it applies even to massively complex systems such as the climate.

Computational modeling dates back to some of the earliest uses of computers,
where complex calculations were needed to understand phenomena. The early
EDSAC (Electronic Delay Storage Automatic Calculator) family of computers
contributed in this way to the work of three Nobel Prize winners, in Chemistry,
Medicine, and Physics. John Kendrew and Max Perutz credited it for the dis-
covery of the structure of myoglobin, Andrew Huxley for work on understanding
the way nerves function, and Martin Ryle for work in radio astronomy. All
acknowledged EDSAC in their Nobel Prize speeches. The astronomer, Joyce
Wheeler, also used EDSAC to investigate the nuclear reactions that keep stars
burning. Computational modeling of the weather by Edward Lorenz led to the
observations that small changes to inputs led to widely differing results. This
ultimately led to the development of chaos theory, showing how computational
modeling can contribute to whole new theory. Now, computational modeling is
a standard approach across science.

This idea is closely tied to that of Papert (1980) that computational methods
could be used as the basis for learning mathematics and other subjects (see
Chapter 19). Simulation can be used to explore and understand subjects that are
new to the learner. Application of computational thinking by learners in non-​
computing subjects, such as in mathematics, economics, or physics, to find math-
ematical solutions to problems at different levels of abstraction (i.e., algorithms
and then computer code) is a demonstration of how computational thinking
skills can lead to deeper, more meaningful learning. A similar approach can be
used in biology (e.g., by coding the behavior of ants laying and following trails,
which can lead to a deeper understanding of that behavior as a learner).

17.2 � The Elements of Computational Thinking

While there are differing views as to the details, there is a lot of agreement
at least as to the core elements that make up computational thinking: algorithmic
thinking, logical thinking, abstraction, generalization, and decomposition, for
example, are generally agreed to play a part (Selby & Woollard, 2013). A range

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.018
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 02 Mar 2019 at 10:58:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.018
https://www.cambridge.org/core

Computational Thinking 525

525

of other aspects have also been suggested, including recursive thinking, pattern
matching, representation, heuristic thinking, scientific thinking, probabilistic and
statistical reasoning, understanding people, concurrency and parallelism, and
attention to detail. We discuss the core, uncontroversial elements in depth here.
Many other aspects are arguably sub-​skills of, or closely linked to, these core
elements. For example, recursive thinking can be thought of as an advanced form
of decomposition. In the examples given below, the skills described draw upon a
combination of the core elements –​ particularly generalization, decomposition,
and abstraction. Other definitions (e.g., Google, n.d.; ISTE/​CSTA, 2014) are in
part different because they group the separate aspects differently, such as pulling
out pattern matching as a separate skill from generalization or linking abstrac-
tion and decomposition together as a single core element.

17.2.1 � Algorithmic Thinking

Algorithmic thinking is the idea that solutions to problems are not limited to one-​
off answers like, “The vending machine will give a $5 and $10 note as the change,”
but rather are algorithms that can give answers whenever needed for general
cases: instructions that, if followed blindly and precisely, are guaranteed to lead
to an answer, such as, “Here’s how to work out the notes and coins to give if you
buy an item worth x dollars and give the vending machine y dollars.” If a person
can express the solution to a problem as a general algorithm that will solve it for
all cases, then they have shown a deeper understanding of the problem than other-
wise. It is possible to be able to do related tasks without that deeper understanding
of the algorithm. For example, most people can give correct change, but articu-
lating the process exactly (see if the largest note is too much, if not, give one out,
then …) is quite difficult to do. This is akin to the fact that people can catch a ball
without being able to explain the laws of gravity. If a student writes an algorithm
that another person can follow or implements an algorithm as a program that
works correctly for any input (such as giving change for any amount of money),
then they have demonstrated that they do deeply understand the process.

An important issue in creating algorithms, and therefore algorithmic thinking,
is in trying to get the most efficient algorithm for the job, where this could, for
example, mean the fastest or alternatively the least memory-​hungry algorithm.
Often the best answer involves trade-​offs in choosing between algorithms, rather
than there being a single right answer.

A key part of algorithmic thinking, given Turing’s result on the essence of
computation and Turing completeness (Böhm & Jacopini, 1966; Aho, 2012),
is that a computational thinker can give instructions making use of all three
of sequence, selection, and iteration. Without this basic minimum, one cannot
claim to have a true grasp of computation. Because these “big three” define
everything that computational devices can do in terms of flow of control, having
an understanding of them opens the full power of computation. It also defines
the limits of computation and underpins our understanding of what computers
can’t do (Harel, 2003).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.018
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 02 Mar 2019 at 10:58:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.018
https://www.cambridge.org/core

526

526

Curzon, Bell, Waite, and Dorling

Algorithmic thinking is the core part of the computational thinking skill set
that makes it different from the thinking skills of other disciplines such as sci-
entific thinking, mathematical thinking, design thinking, and so on where the
other building blocks of computational thinking arise. Computing overlaps
and draws on many other subjects. The core of computing is centered around
algorithms, however. Similarly, computational thinking draws on and overlaps
with other problem-​solving approaches from those disciplines. In this sense,
algorithmic thinking is the defining part that makes it different. However, on
its own, algorithmic thinking is not enough to be generally useful as a way of
problem-​solving (unless one subsumes all of the other aspects into the term
“algorithmic thinking”).

17.2.2 � Logical Thinking

Being able to think logically is a core skill that underpins all versions of
computational thinking. Logic underpins the semantics of programming
languages, and thinking in a logical way is needed to develop algorithms,
to implement these as programs, and to verify whether or not they work
correctly, either informally or formally. Computer scientists developing
algorithms need to be able to think through a problem, being sure that
their solutions cover all possibilities that might arise and that they are
guaranteed to always give the correct solution. Of course, with the advent
of machine learning approaches, this becomes a question of probabilistic
reasoning, rather than pure logical reasoning (see Chapter 20). At one end
of the logical thinking spectrum lies simply thinking clearly and precisely,
including avoiding errors and with attention to detail. At the other end lies an
ability to reason about algorithmic solutions using formal logic. In between
lies being able to put together rigorous arguments based on deductive or
inductive reasoning. While formal reasoning in logic is a core aspect of com-
puting, few computer scientists learn to do it well, so what usually seems to
be meant by commentators in the context of computational thinking is the
less rigorous versions. Formal logical reasoning is, however, a sophisticated
aspect of computational thinking that is certainly desirable for programmers
and can be considered a part of the highest levels of progression in compu-
tational thinking skill.

17.2.3 � Abstraction

Abstraction is the process of simplifying and hiding detail to get at the essence
of something of interest. As part of computational thinking, it provides a way
to manage complexity in order to make problem-​solving easier and allow truly
massive computational systems to be designed. By building in levels of abstrac-
tion, the fine details of lower levels can be ignored when working on higher
levels. Once you have logic gates, you can ignore the details of transistors. Once
you have a computer architecture, you can ignore the details of logic gates,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.018
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 02 Mar 2019 at 10:58:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.018
https://www.cambridge.org/core

Computational Thinking 527

527

and so on. Once you have a programming language, you can ignore assembly
language, which itself allowed you to ignore machine code. This is a core skill
underpinning the way that the subject of computing has developed. It is also a
core skill of computer scientists because without it, building the immensely large
and complex systems that we now rely on is intractable. It is only by building in
layers with clean interfaces between them that complex systems can be built, so
that the complexity of each new layer is simple once the complexity of the lower
layers has been hidden by the interface. A course has even been given where
students build all of the layers of abstraction one at a time, starting with logic
gates, and ending up with a working program running on an operating system
(Schocken & Nisan, 2004). Such an endeavor is made possible by breaking it
into 12 levels of abstraction.

Computer scientists make use of a wide variety of forms of abstractions both
in programming and in system design more generally. These include control
abstraction, which is the core of developing programs based on procedures and
functions, and data abstraction, which is the core idea behind building complex
data types from simpler ones.

Being able to think at multiple levels of abstraction and move between levels
is a key ability. This is needed as one develops solutions, moving back and
forth, for example, between the level of the problem, design levels, and pro-
gramming levels. Linked to this is being able to view systems through different
abstractions: the bus map intended for passengers may not, for example, include
locations and times where drivers swap as their shifts start and end, whereas the
abstract version for drivers would have very different information.

Abstraction is not just important for building systems, but also for the devel-
opment of theory. For example, O-​notation focuses on critical operations rather
than all operations or processor cycles. Hiding that detail allows us to reason
effectively about the efficiency of algorithms. Abstract models of computation
(such as Turing machines, finite-​state machines, and random access models)
allow us to understand computation itself, including its limits.

17.2.4 � Generalization

Generalization involves taking the solution to a problem and creating a more
general version that is applicable to a wider set of problems. In a computational
thinking context, this is first and foremost applied to algorithms. Having come
up with a way to solve a specific problem, can the details be abstracted away to
give a more general algorithm that is not just specific to that problem?

At a simple level, a sequence of instructions that are applied repetitively can
be generalized to a loop. A more sophisticated generalization is to develop
general-​purpose functions. For example, if there are several situations where the
user enters a date, a function could be developed once and for all that allows the
user to do this, verifying that it is valid. A more general version of the function
might have parameters that restrict the range of dates (e.g., a booking website
would not allow a user to enter a date in the past). Generalization can be applied

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.018
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 02 Mar 2019 at 10:58:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.018
https://www.cambridge.org/core

528

528

Curzon, Bell, Waite, and Dorling

to both problems and solutions. For example, the problem of listing the top ten
scores in a game could be generalized to creating a list of any number of scores.
A possible solution –​ sorting the scores into order –​ could be generalized to a
procedure that will sort any list of values into ascending or descending order.

Generalization is closely related to pattern finding (another idea that is often
given as an element of computational thinking). When a pattern is noticed
either in a program or in data, there is an opportunity to express it more gener-
ally by capturing the pattern rather than the specific case. For example, students
might use a programming language to draw a square by giving the sequence of
instructions “turn right, forward ten steps, turn right, forward ten steps, turn
right, forward ten steps, turn right, forward ten steps.” This could be generalized
by a loop that repeats the two-​instruction pattern four times; and that in turn
could be generalized to draw polygons by changing the number of repetitions
and the angle of the turn.

Generalization skills do not just apply to programming, but also to problem-​
solving more generally. Whether or not the ultimate intention is a program, gen-
eralizing a problem or situation in the same way can, for example, lead to a
deeper understanding of that problem or situation, which may be important in
its own right.

17.2.5 � Decomposition

Decomposition is the idea that to solve a complex problem, including writing
a complex program, it can often be broken into smaller parts that can each be
solved separately and much more easily. This is closely connected to control
abstraction. The simplest forms are task-​based, or procedural, decomposition.
For example, if one is creating a robot face that shows “emotions” through
expressions, one could break the problem into that of solving each whole task
(i.e., how to present each emotion). Program a happy face first, then separately
program a sad face, and so on.

A different take on decomposition is to focus on the real-​world problem or
context, focusing on the real-​world objects making up the system to be modeled
and splitting the problem into one of modeling each of those aspects separately.
This leads to an object-​based decomposition. Taking the same example of pro-
gramming a robot face, one could instead decompose the problem into that of
programming a mouth for all emotions, then separately programming an eye,
and so on. Object-​based decomposition potentially provides a higher level of
structuring than a procedural decomposition.

Another focus of decomposition can be on the processing of data structures.
Rather than process the whole of a data structure, it can be split into parts and
either the same or different algorithms can then be developed for processing
those parts.

Decomposition links to generalization in that if we can decompose a problem
into subproblems that generalize to ones that we have solved before, then we
can just take those sub-​solutions and reuse them. Abstraction means we do

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.018
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 02 Mar 2019 at 10:58:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.018
https://www.cambridge.org/core

Computational Thinking 529

529

not have to worry about how those sub-​solutions work, just that they solve the
given subproblem. This leads to more sophisticated forms of decomposition
and, in particular, recursive and divide-​and-​conquer problem-​solving.

17.2.6 � Evaluation

Evaluation is a potential element of computational thinking. However, there
is no complete consensus on its inclusion. Practically, it is clearly an important
part of any problem-​solving approach. It is also very clearly a vital part of
the skill of programming, where more time is typically spent testing solutions
than writing code itself. The contentious issue is simply whether it should be
considered as a part of “computational thinking.” For example, Berry (2014),
who takes computational thinking to be “looking at problems or systems in
a way that considers how computers could be used to help solve or model
these,” omits evaluation from his description of computational thinking for
primary schools. Selby and Woollard (2013), however, identified it as one of
the more widely claimed terms that are used in relation to computational
thinking in a survey of educators and other experts. That in itself does not
mean it should be part of a definition, just that it is widely accepted as being
so. It was consequently included in the UK Computing at School definition
(Csizmadia et al., 2015). This is just one example of the different ways of
defining computational thinking.

One argument for its inclusion is that unlike in school mathematics problem-​
solving, where an answer is right or wrong, in computing there are lots of ways
to achieve the same result, some of which are better than others. Importantly,
coming up with a solution requires trade-​offs to be made (e.g., with respect to
speed and memory usage). Evaluation of whether requirements are met (beyond
just producing correct answers) matters. Programmed solutions may technically
meet a functional specification, but be unfit for purpose because they are too
slow or don’t scale. This might also be due to usability or user experience issues.
Evaluation of whether solutions are fit for purpose therefore has to be a core
part of any successful computing-​related problem-​solving approach. If com-
putational thinking does not include elements of evaluation, it would be only a
partial approach for computer scientists.

17.2.7 � Computational Modeling

Some of the apparent differences between authors over the definition of compu-
tational thinking are really just to do with what one considers to be the top-​level
skills. For example, we have argued that computational modeling is a key com-
puting approach that has changed research and development in other subjects.
As such, modeling is an important aspect of computational thinking. Denning
(2017) proposes it is an absolutely central component. Computational modeling
can be thought of as a separate topic or as one aspect of algorithmic thinking
where it is applied to problems that can be simulated.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.018
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 02 Mar 2019 at 10:58:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.018
https://www.cambridge.org/core

530

530

Curzon, Bell, Waite, and Dorling

On the other hand, computational modeling applies not just to simulation
approaches (so programming solutions). At higher levels of abstraction, it can be
used with models that are not executable. One can do proof and model checking
of appropriately designed computational models too. This leads to similar ends
as with programmed simulation models, but allows exhaustive experiments to
be conducted. This is an example where computational thinking is potentially
about much more than the skill of coding. It leads to the application of verifi-
cation tools and techniques rather than programming ones, and applying them
to the understanding of the world too. These tools require models to be written
in formal logical languages with an axiomatic basis (e.g., Peano’s axioms) rather
than programming languages with a model of computation as their basis, but
otherwise the issues are similar –​ we are just working at a higher level of abstrac-
tion. The more sophisticated logical thinking skills mentioned above –​ working
with formal logic –​ are needed here. The use of such tools and thinking is a part
of formal program development for safety-​critical systems, so any definition
of computational thinking as being about the wider development of programs
rather than narrowly as coding should include it.

17.2.8 � Expressing Algorithms in Formal Languages

None of the computational thinking concepts above explicitly addresses the
step of writing actual code (i.e., expressing the algorithm in a precise syntax
that has a detailed, formally defined semantics). A student may have developed
a design including algorithms in a loose pseudocode or in a flow chart lan-
guage, but it is another step –​ and another skill –​ to be able to implement
this as code in a specific language correctly. This often seems to be implicitly
assumed by commentators, rather than explicitly stated. If computational
thinking is the skill of developing programs, then expressing an algorithm as
code must be part of the computational thinking skill set. This transition from
a logical design to a physical implementation is part of the ability to work
at multiple levels of abstraction. This is more than just about programming,
though –​ expressing an algorithm precisely needs a level of rigor, and more
formal pseudocode-​ or logic-​based specification languages require similar skills
in using formal language precisely. Guzdial (2008) explicitly discusses issues
around this skill. For example, there are higher-​level issues to be explored,
such as the way people naturally omit certain steps, like else cases, from formal
descriptions. A separate issue again, beyond having mastery of the language
constructs, is having mastery over their pragmatic use to best develop readable
and maintainable code. Machines must be able to follow code, but humans
must be able to understand it.

17.2.9 � A Holistic View

In practice, computer scientists use mixtures of these separate skills at different
times, and when combined they are much more powerful than alone. For
example, thinking in terms of layers of abstraction to decompose a problem

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.018
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 02 Mar 2019 at 10:58:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.018
https://www.cambridge.org/core

Computational Thinking 531

531

and drawing on previous generalized solutions makes it much easier to create
algorithmic solutions to problems. Understanding the separate elements is
important. However, it is also important that this holistic aspect is understood
too, not just the individual skills. Educators need to consider how best to help
students develop both of these elements and how to develop the skill of com-
bining the separate parts into computational thinking as a whole. In practice,
most lessons and activities will use a range of the skills at the same time.

17.2.10 � Links to the Skill Sets of Other Disciplines

Is computational thinking something new and totally different from thinking
and problem-​solving in other subjects? Computing itself emerged from a range
of subjects, including mathematics, engineering, design, and the social sciences.
Likewise, computational thinking builds on problem-​solving and modes of
thinking from other subjects. Generalization, decomposition, abstraction,
logical thinking, and other components all play important parts in other discip-
lines. It draws on design (“the ultimate goal is computational design” [Denning,
2017], and interaction design is also a key part of making usable systems), math-
ematics, scientific methods (e.g., in evaluation A/​B testing, virtual experiments,
etc.), engineering methods, and general problem-​solving methods.

There is no reason why computational thinking has to be totally unique in
order to be an important concept and skill. If it were to be no different from
other problem-​solving skill sets, then that is an argument for the importance of
teaching it to all. However, as argued, from a philosophical point of view, it has
led to a seismic change in modes of thought. The difference is ultimately in the
importance placed on algorithms in the skill set and how the separate skills used
in other disciplines apply to algorithmic thinking, not the elements themselves.
Algorithmic solutions in turn lead to the possibility of programmed solutions.

17.3 � Research: What Is Known

There has been increasing research in how to teach and assess compu-
tational thinking explicitly, especially since the 2006 revolution. This has built
on earlier work on teaching computer science and programming, given that even
without the name, the component skills were still being taught, if implicitly.
There has been an explosion of interest on the back of Wing’s work, culmin-
ating in 2017 with a new international conference series being launched with a
sole focus on computational thinking education (CSE, 2017). This bodes well
for the future as researchers investigate the best ways to teach different aspects,
their actual effects on student learning and skills, and whether there is general
benefit to be had or not, divorced from programming skills. However, care has
to be taken in that different authors often use their own interpretations of what
computational thinking is across the full range of possibilities discussed and
more, so results are not necessarily about the same thing. We overview some
major themes in the existing research below.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.018
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 02 Mar 2019 at 10:58:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.018
https://www.cambridge.org/core

532

532

Curzon, Bell, Waite, and Dorling

17.3.1 � Unplugged Computational Thinking

Unplugged activities (Bell, Rosamond, & Casey, 2012) have long been success-
fully used at all levels, from primary to master’s levels, as well as when teaching
adult teachers, as a way to teach programming and computing concepts more
generally in constructivist ways. This covers a variety of techniques, including
role-​playing, puzzles, games, and magic, to illustrate concepts (Curzon &
McOwan, 2017). These activities often help develop computational thinking in
its widest sense too. Activities can also be used to explicitly illustrate the high-​level
elements of computational thinking, like decomposition, generalization, and
abstraction. Teaching London Computing (http://​teachinglondoncomputing.
org), the Digital Schoolhouse (www.digitalschoolhouse.org.uk), and the lesson
plans on csunplugged.org, for example, make these opportunities explicit across
a wide range of cross-​curricula activities.

Curzon (2014) argues that the core ideas of computational thinking can be
explained in powerfully memorable ways using a combination of contextually
rich stories and unplugged activities. He gives example activities embedded in
such stories that have successfully been used. Examples given include stories
concerned with helping people with locked-​in syndrome, using games and role-​
play, and the design of medical devices using magic trick-​based activities. These
ideas are expanded upon in Curzon and McOwan (2017). This approach has suc-
cessfully been used as part of continuous professional development for teachers.
A series of workshops given following this approach had shown strongly posi-
tive evaluation results (Curzon, 2014; Meagher, 2017).

However, much of the work on unplugged approaches is anecdotal and
much more research is needed, including on the important issue of how such
approaches are linked to programming itself.

17.3.2 � Computational System Design and Programming

Computational system design involves a wider set of activities than program-
ming, and those activities include computational thinking elements. When
analyzing the requirements and designing the solution, the task is broken into
manageable parts to attend to, and so decomposition is used; at each stage of
increasing exploration of the task, abstraction is needed to work at an appro-
priate level of detail, and so on. Research on effective teaching of overall design
processes is therefore relevant. Here, we focus on research where there are links
between computational thinking ideas and programming.

McCracken et al. (2001) describe a five-​step process for problem-​solving that
learners should use to aid computational design. These fives step map to the
computational thinking core concepts of Selby and Woollard (2013):

	1.	 Abstract the problem from its description (abstraction)
	2.	 Generate subproblems (decomposition)
	3.	 Transform subproblems into subsolutions (generalization and algorithmic

thinking)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.018
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 02 Mar 2019 at 10:58:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.018
https://www.cambridge.org/core

Computational Thinking 533

533

	4.	 Recompose (algorithmic thinking)
	5.	 Evaluate and iterate (evaluation)

However, McCracken et al. (2001) highlighted that few students were able to
use this process and noted that students appeared “clueless.” Lister et al. (2004,
2011) and Lopez et al. (2008) highlight the importance of being able to read
and trace code as precursors to the problem-​solving skills needed to write code,
so these may be precursors to any form of programming-​based computational
thinking. For example, this suggests that before one can do functional abstrac-
tion, one needs to be able to read and trace existing code that uses such abstrac-
tion. A precursor to that is understanding the basic concepts and their semantics.

Fuller et al. (2007) identified 11 programming skills needed by students, and
mapped them to Bloom’s taxonomy, presented in a matrix format. For example,
the ability to debug requires “application” and “analysis” thinking skills. Each
of the 11 skills is underpinned by the computational thinking core elements
discussed above. For example, tracing and adapting code develop evaluation
and generalization skills. Designing and modeling solutions (as algorithms and/​
or programs) develop algorithmic thinking, abstraction, and evaluation skills
(Sentance & Csizmadia, 2017). Developing the computational thinking skill
appears to provide a foundation for the corresponding programming skill.

Computational thinking skill is not the only thing needed by programmers, of
course. They also need to understand the syntax of the language they are using
as well as the programming constructs available to them in order to implement
the design. This leads back to some of the earlier extensions discussed, as it
implies that issues to do with language concepts and terminology are precursors
to computational thinking.

17.3.3 � Abstraction

Abstraction is a particularly important pillar of computational thinking and
has attracted specific attention. An important question now that computational
thinking is part of school syllabuses is: How young can you start to learn about
abstraction? It is sometimes suggested that Piaget’s work implies that children
cannot learn about abstraction until they reach a particular age and stage of
development –​ that of formal operational at around the age of 12. The National
Research Council report on computational thinking (National Research
Council, 2011) asked for a review of this. However, Piaget himself suggested
that children use abstraction from before the age of two and that abstraction is
used continuously when learning “without end and especially without an abso-
lute beginning” (Piaget, 2001, p. 136).

Armoni (2013) pointed out that abstraction, as part of the process of
developing programs from solutions, is hard to teach. She suggested a “level of
abstraction” framework and gave guidelines for teaching abstraction. Several
authors have argued that programming ability can be developed by explicitly
focusing students on abstraction, particularly different levels of abstraction, as

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.018
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 02 Mar 2019 at 10:58:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.018
https://www.cambridge.org/core

534

534

Curzon, Bell, Waite, and Dorling

part of the process of writing programs. This has been considered both with
respect to tertiary institution students (Aharoni, 2000; Cutts et al., 2012; Hazzan,
2003) and school students (Armoni, 2013; Statter & Armoni, 2016; Waite et al.,
2016, 2017). Cutts et al. (2012), for example, argued that focusing on a model
of three levels of abstraction helps students develop their programming ability.
Their levels were: English descriptions, computer science speak (i.e., a halfway
house such as pseudocode, where some of the terminology of code, like vari-
able and procedure names, is embedded in English phrasing), and code. Statter
and Armoni’s (2016) model is similar, but with four levels: the statement of the
problem, its description as an algorithm or design level, the program itself, and
finally the concrete execution of that program. Grade 7 students who were expli-
citly taught these different levels did focus more on the algorithm level in their
descriptions. Thus, explicitly teaching about abstraction, even with a simple set
of levels, can help the development of programming skill.

17.3.4 � Assessment

A critical research area is how to assess computational thinking (see also
Chapters 10 and 14). Denning (2017) suggests that it should be assessed as a skill,
with others focusing on knowledge frameworks such as those of Computing at
School (Csizmadia et al., 2015) and K12CS (https://​k12cs.org). However, skills
and knowledge coexist and, in particular, conceptual computer science know-
ledge, computational thinking skills, and programming skills can and should
coexist. As with programming itself, assessing it as a skill does not preclude the
pedagogical importance of assessing understanding of knowledge too. Having
a strong conceptual knowledge of a discipline can also support the development
of related skills –​ if you understand how a gearbox works, learning the skill of
changing gears in a car can be easier. Similarly, if you have a deep understanding
of the concept of abstract data types, then using that form of abstraction in
programs is easier. Knowledge helps refine skills as you know more of what you
are trying to do and why.

A variety of researchers have explored ways to assess computational thinking
as a skill. This could be done by assessing the individual component skills or by
assessing computational thinking as a holistic single skill. One approach is to
directly assess the skills based on evidence in programs. If programming is seen
as the whole point, then the idea is that computational thinking can be assessed
by the quality of the programs that a student produces. Another approach is
to assess the skills using more general problems at a higher level of abstraction
than that of writing programs. We provide an overview of some of the research
on these topics below.

17.3.4.1 � Assessing Computational Thinking through Programming

Several automated approaches have been suggested to assess computa-
tional thinking based on evaluating programs. For example, both Dr. Scratch

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.018
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 02 Mar 2019 at 10:58:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.018
https://www.cambridge.org/core

Computational Thinking 535

535

(Moreno-​León, Robles, & Román-​González, 2015) and Seiter and Foreman’s
(2013) “Progression of Early Computational Thinking” (PECT) model are
applied to Scratch programs to assess primary-​aged students’ development of
computational thinking skills. These approaches are based on the idea that com-
putational thinking skills should ultimately be evident in programs written. As
such, they may therefore not assess more general application of the skills and
are dependent on sub-​skills concerned with actually embodying an algorithm in
a formal language.

PECT (Seiter & Foreman, 2013) aims to combine direct measures of programs
with broad design patterns that are linked to computational thinking concepts.
Seiter and Foreman applied PECT to 150 Scratch projects of primary students
of differing ages, concluding that it showed that progression in students’ skills
improved as they got older.

Seiter (2015) has also used the Structure of Observed Learning Outcomes
(SOLO) taxonomy (Biggs & Collis, 1982) to give insight into computational
thinking ability as embodied in Scratch programming. This was based on how
well students could understand the structure of the problem. It focused on
such things as their ability to synchronize the costumes and motions of single
and multiple sprites. However, the low numeracy and literacy of some students
meant that those students could not understand the tasks at all. Seiter concluded
that students above this level can understand multiple concerns and incorporate
them into a single script. They can also synchronize a single concern between
more than one script. However, synchronizing many concerns across many
scripts was a challenge.

17.3.4.2 � Assessing Computational Thinking through Problem-​Solving

An alternative to basing assessment of computational thinking skill on programs
is to assess proficiency at more general problem-​solving tasks. Several authors
have aimed to do this based on Bebras (Dagiene & Futschek, 2008). Bebras is an
international competition with questions on both computing concepts and com-
putational thinking skill. Hubwieser and Mühling (2014) suggested that Bebras
tasks were suitable as an international benchmark test for computing ability
in the style of the Programme for International Student Assessment (PISA)
tests. They give a methodology for finding and validating groups of questions
that measure specific competencies. Such an approach could be used to iden-
tify problems that test specific computational thinking competencies. Dagienė
and Sentance (2016) give recommendations on how Bebras tasks can be used
to develop and assess children’s computational thinking skills specifically. They
created an explicit two-​dimensional classification scheme for questions (Dagienė
et al., 2017). Computational thinking aspects act as one dimension and content
knowledge as the other.

Project Quantum (Oates et al., 2016) is a crowdsourced multiple-​choice com-
puter science question bank being pioneered in the UK to provide formative
assessment. Quality assurance is integral via a feedback loop based on big data

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.018
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 02 Mar 2019 at 10:58:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.018
https://www.cambridge.org/core

536

536

Curzon, Bell, Waite, and Dorling

that will be generated from its expected widespread use. Questions are machine-​
markable and algorithms will generate data about the quality of questions.
Bebras questions are one of the sources used, and so this could be a way of deter-
mining and/​or improving the quality of the computational thinking questions,
ultimately generating a large, quality-​assured set of questions.

Several other specific “computational thinking” tests have been developed. The
“Computational Thinking Test” (CTt) (Román-​Gonzáles, 2015) is a multiple-​
choice questionnaire involving 28 questions, such as whether a particular
program will lead a character along a given maze path. It tests understanding of
programming concepts such as loops and conditionals. Korkmaz, Çakirb, and
Özdenc (2017) similarly developed a set of 29 five-​point Likert scale questions
to assess computational thinking. Tested on over 1,000 students, the authors
concluded that it is a valid and reliable tool for measuring computational thinking
skills. Brennan and Resnick (2012), however, suggest that assessment requires a
combination of approaches. They used an analysis of projects, artifact-​based
interviews, and pupils completing design scenario challenges. They concluded
that this triangulation leads to an understanding of computational thinking
concepts and practices, but that these approaches do not effectively reveal
changes in expressing, connecting, and questioning perspectives.

17.3.4.3 � Determining Progression and Age-​Appropriate Curricula

Designing assessment requires both an understanding of what is to be
assessed and a methodology for capturing the specific knowledge, skills, and
understanding at a point in time. In school, teachers develop lesson activities to
teach objectives for learners that help them make progress. What those objectives
are and how one might move from one objective to another to provide progres-
sion matter as computational thinking is brought into the school curriculum.

Dorling and Walker (2014) interpreted the English curriculum in the form of
an easily digestible table. This table presented the learning statements by either
topic area taken from the Computing at School Curriculum for Schools docu-
ment (Computing at School, 2012) or by subject strands: Computer Science,
Information Technology, and Digital Literacy. Dorling, Selby, and Woollard
(2015) suggested that this interpretation of the curriculum had aligned computa-
tional thinking core elements to all of the statements in the table. A later version
of the grid was cross-​referenced to the computational thinking concepts outlined
in Csizmadia et al. (2015). Rich et al. (2017) also consider progression of con-
ceptual ideas and links to computational thinking based on a detailed review of
over 100 computing education research articles. They use concept maps to show
progress and also propose an alternative model to the spiral curriculum.

Barefoot (2014a, 2014b), which provides material for primary school teaching
of computing, suggests ideas for progression in computational thinking for chil-
dren aged 3–​11. However, this is not a complete progression, as it only provides
suggestions for a limited set of lessons, some set in programming contexts,
others in a cross-​curricula scenarios.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.018
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 02 Mar 2019 at 10:58:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.018
https://www.cambridge.org/core

Computational Thinking 537

537

Bebras (Dagiene & Futschek, 2008) is also structured by age, using six
groupings of questions from ages 5 to 19 with the complexity of the problems
increasing. This is a loose organization, and individual countries can choose the
questions that they think are appropriate. However, the groups of questions are
linked to age, and therefore a progression is implied.

Denning (2017) suggests existing progression frameworks are focused on pro-
gression of knowledge and that this is misguided. This is not entirely true –​ as
noted above, several groups have considered skills-​based progression. However,
he makes the important point that there are two separate issues: knowledge-​
based progression and skills-​based progression. Both should be addressed.
Frameworks for progression of both skills and conceptual knowledge within
subjects are needed, and arguably integrated versions are needed too. Research
about the appropriateness and effectiveness of progression frameworks is
needed.

17.3.4.4 � Validity

In all approaches to assessment, validation of the underlying models and/​or the
tools and techniques based on them is needed. Methods might concern com-
putational thinking as a whole, some specific subset of it, or individual foun-
dational skills. Much research is needed in this area. For example, according to
Armoni (2013), in 2013, there were no validated methods to assess abstraction
ability.

An important issue is whether different approaches produce the same
answers –​ their convergent validity. Román-​Gonzáles et al. (2017) explore
this for three approaches: Dr. Scratch (Moreno-​León & Robles, 2015), Bebras
(Dagiene & Futschek, 2008) and CTt (Román-​Gonzáles, 2015). Their results
suggest that CTt partially converges with the other two. They suggest that the
three approaches are complementary, and they use a revised version of Bloom’s
taxonomy (Krathwohl, 2002) as a way to classify this. They conclude that
Dr. Scratch assesses the very top “create” and “evaluate” levels of Bloom’s tax-
onomy, Bebras assesses the “analyze” and “apply” levels, and CTt assesses the
“understand” and “remember” levels, as it focuses on the concepts related to
computational thinking rather than the practice of it. In essence, this is saying
that Dr. Scratch assesses the programming part of computational thinking,
Bebras targets more general thinking skills, and CTt targets conceptual know-
ledge of computational thinking.

17.4 � Implications for Practice

17.4.1 � Implications Depending on the View Taken

If one takes the view that computational thinking is primarily associated with
learning to program, and it doesn’t directly support learning in other subjects,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.018
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 02 Mar 2019 at 10:58:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.018
https://www.cambridge.org/core

538

538

Curzon, Bell, Waite, and Dorling

then the important focus becomes how to teach programming itself well.
Studying the component skills can still enhance insight into how to teach pro-
gramming. One such insight is that making students explicitly focus on levels of
abstraction when programming helps develop programming ability (Cutts et al.,
2012; Statter & Armoni, 2016).

If one takes the intermediate view expounded by Lee (2016) that computa-
tional thinking is about more than coding itself, but the person concerned must
have an aim that the resulting algorithm be carried out on a computer, not by
a human, then the focus is different. The key practical point Lee recommends
is that repeated practice is needed of working with real-​world problems and
how they are solved using information processing devices. Practice is needed in
taking real-​world problems, developing from them statements of the problems
in a form that can be solved by computers, designing algorithms that solve those
problems, and implementing those algorithms as programs, specialized hard-
ware, or combinations of the two. This involves both understanding and taking
into account, from the outset, the actual goals and needs of stakeholders and
verifying and validating those solutions in the real world.

If one takes the wide view that computational thinking is a transferable skill
for all and that algorithms go beyond computers and may be usefully followed
by humans too (as in the original definition of the words “algorithm” and
“computer”), the implications are different again. This implies that computa-
tional thinking can and should be developed both through programming and
through other means. The focus then turns to how to develop the individual
skills across a wide range of information processing situations, physical and
otherwise, in computing and other subject contexts. Exploring how best to use
them together is also critical, so developing the holistic skill matters. Any skill
is developed with practice: the more, the better. Therefore, students need to be
encouraged to practice as much as possible, in as many contexts as possible, not
just programming contexts. In this view, starting to develop general computa-
tional thinking skills, not just programming skills, should start early in primary
school, as some countries are now doing. Making links from activities such as
writing clear instructions to early programming tasks is also important.

Whichever view is taken, intrinsic motivation to practice the skills needs
to be developed (see also Chapter 11). Ensuring such practice is fun and
engaging is one important element, as is providing realistic context. The edu-
cational community also needs to develop appropriate progression pathways
for their pupils from primary school upwards that develop and refine the
skills over time.

Developing the component skills separately provides a foundation for learning
computational thinking as a whole. Knowledge supports the development of
skill, and teachers need to understand the barrier concepts and points so that
they can help students overcome them.

As with any skill, having an understanding of the underlying concepts and
having the vocabulary to express them by themselves can help develop the skills
in a reflective way. Therefore, the skills and concepts need to be developed in

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.018
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 02 Mar 2019 at 10:58:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.018
https://www.cambridge.org/core

Computational Thinking 539

539

parallel. Unplugged methods provide a powerful, constructivist way to do this
at all levels if used well. The theory of semantic waves (Macnaught et al., 2013;
Maton, 2013) provides guidance on how to do this –​ as suggested by Curzon et al.
(2018), one should travel up and down the semantic wave from abstract concepts
to concrete examples of them (whether unplugged, real world, or programming)
and back to the abstract ones, making clear the links between the levels.

Whichever view one takes of the definition of computational thinking,
it is important to be pragmatic regarding developing the best ways to teach
it. Whether one considers computational thinking as something that can
be developed separately from programming or not, and whether or not it
includes physical computation in the world, analogies with real-​world ideas are
powerful ways of teaching concepts and of developing skills. According to the
theory of semantic waves (Macnaught et al., 2013; Maton, 2013), good explan-
ation involves moving from technical, abstract concepts to concrete illustra-
tion, and then back to technical concepts. This is what good use of analogy
and unplugged teaching does. Analogy and simplified explanations are used
widely across other subjects as effective ways to teach. This should not be lost
to computing because of ideology. Ideas such as unplugged teaching should
not be dropped just because one thinks of them as only analogy. Instead, the
fact that they are analogy should be made clear. For example, whether or not
one believes writing a recipe involves any aspect of computational thinking,
a recipe book is still a useful initial way to help students understand concepts
including breaking a problem down into parts (procedural abstraction) and
the ordering of the parts (how the flow of control involved in procedure call
works). Having such understanding about concepts is a critical foundation for
learning to program.

It certainly does help to keep the focus on the general value of skills and
conceptual understanding, even if very specific examples are being taught; for
example, students might be learning the syntax of a Python “for” loop, but the
point is to understand iteration in programs; they might be learning a version
of binary search, but the wider picture is that it is an example of the power of
using divide and conquer to decompose a problem.

Also, whatever view is taken, to develop computational thinking skills fully
does, of course, ultimately involve programming too. This is another kind
of example that can be used to travel a semantic wave of good explanation
(Macnaught et al., 2013; Maton, 2013). Ideally, programming skills should be
developed in conjunction with more general computational thinking skills and
understanding. For example, the Computing at School Working Group suggests:

Computer Science is more than programming, but programming is an abso-
lutely central process for Computer Science. In an educational context,
programming encourages creativity, logical thought, precision and problem-​
solving, and helps foster the personal, learning and thinking skills required in
the modern school curriculum. Programming gives concrete, tangible form to
the idea of “abstraction,” and repeatedly shows how useful it is.
(Computing at School, 2012)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.018
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 02 Mar 2019 at 10:58:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.018
https://www.cambridge.org/core

540

540

Curzon, Bell, Waite, and Dorling

17.4.2 � Practical Resources for Teaching

A wide variety of practical resources and tools exist to support the teaching of
computational thinking. These include:

•	 CS Unplugged (http://​csunplugged.org)
•	 Teaching London Computing (http://​teachinglondoncomputing.org)
•	 Barefoot (http://​barefootcas.org.uk)
•	 The International Society for Technology in Education’s Computational

Thinking Toolkit (Sykora, 2014)
•	 Google’s Exploring Computational Thinking (Google, n.d.)
•	 Bebras (Bebras, n.d.)
•	 Dr. Scratch (www.drscratch.org)
•	 Digital Schoolhouse (www.digitalschoolhouse.org.uk)
•	 Computational thinking rubric (Dorling & Stephens, 2016)

There are many more such resources and resource collections, with more being
developed all the time.

17.5 � Open Questions

Computational thinking is still a relatively new idea, and designing cur-
ricula that use it is even newer. There are many open questions, making it a very
fertile area for future research. The most fundamental open question is just what
definition of computational thinking should be adopted and how wide it should
stretch. In the absence of agreement about definitions of the term, those doing
such research need to be precise about the definition that they are working with.

What definition is appropriate depends to a large extent on the answers to
more specific open questions. For example, we need to determine the true extent
of the transferability of the skills (see also Chapter 9, which explores transfer of
learning). How useful are or can be the skills in practice to learning in other areas
if either a narrow or a wide view is taken? Is there a difference in general useful-
ness if you learn them only as programming versus taking a wider approach to
teaching them? Are they useful at all? Is knowledge of computational thinking
useful in understanding the digital world and how? Can computational thinking
skills be developed effectively outside of programming? How effective are the
various unplugged methods for teaching computational thinking? For example,
does early practice using logic puzzles to refine logical thinking skills actually
lead to better computational thinking skills and so make programming easier to
learn? Similar issues apply to the other components of computational thinking.
What makes an effective unplugged computational thinking activity in general
and what makes them ineffective? How does one best link unplugged and pro-
gramming techniques? Rigorous evidence is needed of what actually does work
and why.

If computational thinking is primarily useful for programmers and can only
usefully be taught through programming, then the question becomes how to

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.018
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 02 Mar 2019 at 10:58:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.018
https://www.cambridge.org/core

Computational Thinking 541

541

enhance those skills more effectively through programming. Even if they can be
developed in other ways, this is still an important question. Either way, we need
to better understand the importance of the conceptual knowledge, program-
ming skills, and computational thinking skills for developing independence
and resilience in learners. In particular, we need further consideration of the
relationships between programming skills and the core computational thinking
concepts. Does a better grasp of computational thinking concepts and subskills
lead to better holistic computational thinking and programming skills, and if
so, how best do knowledge and skills combine? It is often suggested that math
is an important precursor to being able to cope on a tertiary institution com-
puting course. However, it is also often suggested that it is not the math con-
tent that matters. What exactly are those mathematical precursor skills? Perhaps
it is because math does develop some of the relevant precursor skills, such as
attention to detail, logical thinking, or abstraction skills (e.g., in algebra). This
might suggest that teaching the subskills of computational thinking in other
contexts does help.

Validated progression frameworks are needed for both skills and knowledge.
What do you teach at different levels from primary upwards to achieve the best
learning? And how best do you then teach at each level of progression and each
topic? The questions are not just about how to teach. We need to know what the
effective means of both formative and summative assessment are too. There are
very big unanswered questions as to how to assess both programming and com-
putational thinking skills. How are each of the progression levels best assessed
both formatively and summatively? This applies both to computational thinking
overall and to the separate subskills, such as abstraction and generalization.

At the moment, arguments are being made and policy implemented based
on opinion and early results, as there is a lack of evidence. Experiments need to
be founded in rigorous theories of the mechanisms involved. For many of the
research areas outlined, some work has been done, though often on a small scale
and in uncontrolled ways. What is needed is really rigorous evidence around all
of these issues that is more than just action research suggesting an intervention
was a positive experience in a single context. Research needs to be replicated,
including situating the studies in real classrooms, with real teachers, over longer
periods of time, and on larger scales. We need large-​scale, longitudinal com-
parison of teaching, learning, and assessment of computational thinking across
schools, cultures, and age groups. We then need continuous professional devel-
opment for teachers and resources to be developed based on the research. This
material needs to be organized in a validated progression, affording educators
the means to plan lessons and evaluate students’ progress, allowing students to
show what they know and can do.

References

Aharoni, D. (2000). Cogito, ergo sum! Cognitive processes of students dealing with data
structures. ACM SIGCSE Bulletin, 32(1), 26–​30.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.018
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 02 Mar 2019 at 10:58:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.018
https://www.cambridge.org/core

542

542

Curzon, Bell, Waite, and Dorling

Aho, A. V. (2012). Computation and computational thinking. The Computer Journal,
55(7), 832–​835.

al-​Khwārizmī, M. (c. 825). On the Calculation with Hindu Numerals.
Armoni, M. (2013). On teaching abstraction in computer science to novices. Journal of

Computers in Mathematics and Science Teaching, 32(3) 265–​284.
Barefoot (2014a). Barefoot Computing. Retrieved from http://​barefootcas.org.uk/​
Barefoot (2014b). Computational thinking: What does computational thinking look like

in the primary curriculum? Retrieved from https://​barefootcas.org.uk/​barefoot-​
primary-​computing-​resources/​concepts/​computational-​thinking/​

Bebras (n.d.). Bebras International Challenge on Informatics and Computational
Thinking. Retrieved from www.bebras.org

Bell, T., Alexander, J., Freeman, I., & Grimley, M. (2009). Computer science unplugged:
School students doing real computing without computers. New Zealand Journal
of Applied Computing and Information Technology, 13(1), 20–​29.

Bell, T., Rosamond, F., & Casey, N. (2012). Computer Science Unplugged and related projects
in math and computer science popularization. In H. L. Bodlaender, R. Downey,
F. V Fomin, & D. Marx (Eds.), The Multivariate Algorithmic Revolution and
Beyond: Essays Dedicated to Michael R. Fellows on the Occasion of His 60th Birthday,
Lecture Notes in Computer Science (pp. 398–​456). Berlin, Germany: Springer.

Berry, M. (2014). Computational Thinking in Primary Schools. Retrieved from http://​
milesberry.net/​2014/​03/​computational-​thinking-​in-​primary-​schools/​

Bers, M. U. (2017). Coding as a Playground: Programming and Computational Thinking
in the Early Childhood Classroom. New York: Routledge.

Bers, M. U. (2008). Blocks to Robots: Learning with Technology in the Early Childhood
Classroom. New York: Teachers College Press.

Biggs, J. B., & Collis, K. F. (1982). Evaluating the Quality of Learning: The SOLO Taxonomy
(Structure of the Observed Learning Outcome). New York: Academic Press.

Böhm, C., & Jacopini, G. (1966). Flow diagrams, Turing machines and languages with
only two formation rules. Communications of the ACM, 9(5), 366–​371.

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the
development of computational thinking. Vancouver, Canada: Educational
Research Association. Retrieved from https://​scholar.harvard.edu/​kbrennan/​
publications/​new-​frameworks-​studying-​and-​assessing-​development-​
computational-​thinking

Computing at School (2012). Computer science: A curriculum for schools. Computing at
School Working Group. Retrieved from www.computingatschool.org.uk/​data/​
uploads/​ComputingCurric.pdf

CSE (2017). Proceedings of the 1st International Conference on Computational Thinking
Education, July, Hong Kong. Retrieved from www.eduhk.hk/​cte2017/​

Csizmadia, A., Curzon, P., Dorling, M., Humphreys, S., Ng, T., Selby, C., & Woollard,
J. (2015). Computational thinking: A guide for teachers. Retrieved from http://​
computingatschool.org.uk/​computationalthinking

Curzon, P. (2002). Computing without Computers: A Gentle Introduction to Computer
Programming, Data Structures and Algorithms. Retrieved from https://​
teachinglondoncomputing.org/​resources/​inspiring-​computing-​stories/​
computingwithoutcomputers/​

Curzon, P. (2014). Unplugged computational thinking for fun. In T. Brinda, N. Reynolds,
& R. Romeike (Eds.), KEYCIT –​ Key Competencies in Informatics and ICT,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.018
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 02 Mar 2019 at 10:58:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.018
https://www.cambridge.org/core

Computational Thinking 543

543

Commentarii Informaticae Didacticae (pp. 15–​28). Potsdam, Germany: Univer
sitätsverlag Potsdam.

Curzon, P., & McOwan, P. W. (2017). The Power of Computational Thinking: Games,
Magic and Puzzles to Help You Become a Computational Thinker. Hackensack,
NJ: World Scientific.

Curzon, P., McOwan, P. W., Donohue, J., Wright, S., & Marsh, D. W. R. (2018). Teaching
of concepts. In S. Sentance, E. Barendsen, & C. Schulte (Eds.), Computer
Science Education: Perspectives on Learning and Teaching in School (pp. 91–​
108). London, UK: Bloomsbury.

Cutts, Q., Esper, S., Fecho, M., Foster, S., & Simon, B. (2012). The abstraction tran-
sition taxonomy: developing desired learning outcomes through the lens of
situated cognition. In Proceedings of the Ninth Annual International Conference
on International Computing Education Research (pp. 63–​70). New York: ACM.

Dagienė, V., & Sentance, S. (2016). It’s computational thinking! Bebras tasks in the cur-
riculum. In A. Brodnik & F. Tort (Eds.), Informatics in Schools: Improvement
of Informatics Knowledge and Perception (ISSEP 2016). Lecture Notes in
Computer Science (pp 28–​39). Berlin, Germany: Springer.

Dagienė, V., Sentance, S., & Stupienė, G. (2017). Developing a two-​dimensional categor-
ization system for educational tasks in informatics. Informatica 28(1), 23–​44.

Dagiene, V., & Futschek, G. (2008). Bebras international contest on informatics and com-
puter literacy: Criteria for good tasks. In R. T. Mittermeir & M. M. Sysło (Eds.),
Informatics Education –​ Supporting Computational Thinking. ISSEP 2008.
Lecture Notes in Computer Science (pp. 19–​30). Berlin, Germany: Springer.

Denning, P. (2017). Remaining trouble spots with computational thinking.
Communications of the ACM, 60(6), 33–​39.

Denning, P., & Tedre, M. (2019). Computational Thinking. Cambridge, MA: MIT Press.
Department for Education (2013). National Curriculum in England: Computing

programmes of study. Retrieved from www.gov.uk/​government/​publications/​
national-​curriculum-​in-​england-​computing-​programmes-​of-​study

Dorling, M., Selby, C., & Woollard, J. (2015). Evidence of assessing computational
thinking. In A. Brodnik & C. Lewin (Eds.), IFIP 2015: A New Culture of
Learning: Computing and Next Generations (pp. 1–​11). Laxenburg, Austria:
IFIP.

Dorling, M., & Walker, M. (2014). Computing Progression Pathways. Retrieved from
http://​community.computingatschool.org.uk/​files/​5098/​original.xlsx

Dorling, M., & Stephens, T. (2016). Computational Thinking Rubric: Dispositions,
Attitudes and Perspectives, Retrieved from https://​community.computingat
school.org.uk/​resources/​4793/​

Euclid (1997). Elements [c. 300 BCE]. D. E. Joyce (Ed.). Retrieved from http://​aleph0.
clarku.edu/​~djoyce/​java/​elements/​toc.html

Fuller, U., Johnson, C. G., Ahoniemi, T., Cukierman, D., Hernán-​Losada, I.,
Jackova, J., Lahtinen, E., Lewis, T. L., Thompson, D. M., Riedesel, C., &
Thompson, E. (2007). Developing a computer science-​specific learning tax-
onomy. In Proceedings of the ITiCSE-​WGR ‘07 Working Group Reports on
Innovation and Technology in Computer Science Education (pp. 152–​170).
New York: ACM.

Google (n.d.). Exploring Computational Thinking, Google for Education. Retrieved from
https://​edu.google.com/​resources/​programs/​exploring-​computational-​thinking/​

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.018
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 02 Mar 2019 at 10:58:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.018
https://www.cambridge.org/core

544

544

Curzon, Bell, Waite, and Dorling

Grover, S., & Pea, R. (2013). Using a discourse-​intensive pedagogy and Android’s App
inventor for introducing computational concepts to middle school students. In
Proceedings of the 44th SIGCSE Technical Symposium on Computer Science
Education (pp. 723–​728). New York: ACM.

Guzdial, M. (2008). Education: Paving the way for computational thinking.
Communications of the ACM, 51(8), 25–​27.

Harel, D. (2003). Computers Ltd: What They REALLY Can’t Do. Oxford, UK: Oxford
Paperbacks.

Hazzan, O. (2003). How students attempt to reduce abstraction in the learning of math-
ematics and in the learning of computer science. Computer Science Education,
13(2), 95–​122.

Hubwieser, P., & Mühling, A. (2014). Playing PISA with Bebras. In Proceedings of the
9th Workshop in Primary and Secondary Computing Education (pp. 128–​129).
New York: ACM.

Hubwieser, P., Giannakos, M. N., Berges, M., Brinda, T., Diethelm, I., Magenheim, J.,
Pal, J., Jackova, J., & Jasute, E.(2015) A global snapshot of computer science
education in K–​12 schools. In Proceedings of the 2015 ITiCSE on Working
Group Reports (pp. 65–​83). New York: ACM.

Hutchins, E. (1995). Cognition in the Wild. Cambridge, MA: MIT Press.
ISTE/​CSTA (2014). Operational Definition of Computational Thinking for K–​12

Education. Retrieved from www.iste.org/​docs/​ct-​documents/​computational-​
thinking-​operational-​definition-​flyer.pdf

Kafai, Y. B. (2016). From computational thinking to computational participation in K–​
12 education, Communications of the ACM, 59(8), 26–​27.

Kalelioglu, K., Gülbahar, Y., & Kukul, V. (2016). A framework for computational
thinking based on a systematic research review. Baltic Journal of Modern
Computing, 4(3), 583–​596.

Korkmaz, Ö., Çakir, R., & Özden, M. Y. (2017). A validity and reliability study of the
Computational Thinking Scales (CTS). Computers in Human Behavior, 72, 558–​569.

Krathwohl, D. R. (2002). A revision of Bloom’s taxonomy: An overview. Theory into
Practice, 41(4), 212–​218.

Lee, I. (2016). Reclaiming the roots of CT. CSTA Voice: The Voice of K–​12 Computer
Science Education and Its Educators, 12(1), 3–​4.

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., McCartney,
R., Moström, J. E., Sanders, K., Seppälä, O., & Simon, B. (2004). A multi-​
national study of reading and tracing skills in novice programmers. ACM
SIGCSE Bulletin, 36(4), 119–​150.

Lister, R. (2011). Concrete and other neo-​Piagetian forms of reasoning in the novice
programmer. In Proceedings of the Thirteenth Australasian Computing
Education Conference (pp. 9–​18). Darlinghurst, Australia: Australian Computer
Society, Inc.

Lopez, M., Whalley, J., Robbins, P., & Lister, R. (2008). Relationships between reading,
tracing and writing skills in introductory programming. In Proceedings of the
Fourth International Workshop on Computing Education Research (pp. 101–​
112). New York: ACM.

Lu, J. J., & Fletcher, G. H. (2009). Thinking about computational thinking. ACM
SIGCSE Bulletin, 41(1), 260–​264.

Maton, K. (2013). Making semantic waves: A key to cumulative knowledge-​building.
Linguistics and Education, 24(1), 8–​22.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.018
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 02 Mar 2019 at 10:58:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.018
https://www.cambridge.org/core

Computational Thinking 545

545

Macnaught, L., Maton, K., Martin, J. R., & Matruglio, E. (2013). Jointly constructing
semantic waves: implications for teacher training. Linguistics and Education,
24, 50–​63.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagen, D., Kolikant, Y. B.,
Laxer, C., Thomas, L., Utting, I., & Wilusz, T. (2001). A Multi-​National,
Multi-​Institutional Study of Assessment of Programming Skills of First-​year
CS Students. In Proceedings of the 6th Annual Conference on Innovation and
Technology in Computer Science Education, Working Group Reports (ITiCSE-​
WGR ’01) (pp. 125–​180). New York: ACM.

Meagher, L. (2017). Teaching London Computing Follow-​up Evaluation through
Interviews with Teachers, Technology Development Group, Summer. Retrieved
from https://​teachinglondoncomputing.org/​evaluation/​

Millican, P., & Clark, A. (Eds.) (1996). The Legacy of Alan Turing, Volume 1: Machines
and Thought. Oxford, UK: Oxford University Press.

Millican, P. (n.d.). A New Paradigm of Explanation? Retrieved from www.philocomp.
net/​home/​paradigm.htm

Moreno-​León, J., & Robles, G. (2015). Dr. Scratch: A web tool to automatically evaluate
Scratch projects. In Proceedings of the Workshop in Primary and Secondary
Computing Education (pp. 132–​133). New York: ACM.

Moreno-​León, J., Robles, G., & Román-​González, M. (2015). Dr. Scratch: Automatic
analysis of scratch projects to assess and foster computational thinking. RED.
Revista de Educación a Distancia, 46(10), 1–​23.

National Research Council (2011). Committee for the Workshops on Computational
Thinking: Report of a Workshop of Pedagogical Aspects of Computational
Thinking, Washington, DC: The National Academies Press.

NZ Ministry of Education (2017). The New Zealand Curriculum Online: Technology:
Learning area structure. Retrieved from http://​nzcurriculum.tki.org.nz/​The-​
New-​Zealand-​Curriculum/​Technology/​Learning-​area-​structure

Oates,T., Coe, R., Peyton-​Jones, S., Scratcherd, T., & Woodhead S. (2016). Quantum: Tests
worth teaching. White Paper, March, Computing at School. Retrieved from
http://​community.computingatschool.org.uk/​files/​7256/​original.pdf

OED (1993). The New Shorter Oxford English Dictionary. Oxford, UK: Oxford University
Press.

Papert, S. (1980). Mindstorms: Children, Computers and Powerful Ideas. New York: Basic
Books.

Piaget, J. (2001). Studies in Reflecting Abstraction. Edited and translated by R. L.
Campbell. Hove, UK: Psychology Press.

Resnick, M. (2013). Learn to Code, Code to Learn. Edsurge, May 8. Retrieved from
www.edsurge.com/​news/​2013-​05-​08-​learn-​to-​code-​code-​to-​learn

Rich, K. M., Strickland, C., Binkowski, T. A, Moran C., & Franklin, D. (2017). K–​
8 learning trajectories derived from research literature: Sequence, repetition,
conditionals. In Proceedings of the 2017 ACM Conference on International
Computing Education Research (ICER’17) (pp. 182–​190). New York: ACM.

Román-​González, M. (2015). Computational thinking test: Design guidelines and con-
tent validation. In Proceedings of the 7th Annual International Conference on
Education and New Learning Technologies (EDULEARN 2015) (pp. 2436–​
2444). Valencia, Spain: IATED Academy.

Román-​Gonzáles, M., Moreno-​León, J., & Robles, G. (2017). Complementary tools
for computational thinking assessment. In Proceedings of the International

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.018
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 02 Mar 2019 at 10:58:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.018
https://www.cambridge.org/core

546

546

Curzon, Bell, Waite, and Dorling

Conference on Computational Thinking Education (CTE2017) (pp. 154–​159).
Ting Kok, Hong Kong: The Education University of Hong Kong.

Royal Society (2012). Shut Down or Restart? The Way Forward for Computing in UK
Schools. London, UK: The Royal Society.

Royal Society (2017a). After the Reboot: Computing Education in UK Schools. London,
UK: The Royal Society.

Royal Society (2017b). Machine Learning: The Power and Promise of Computers That
Learn by Example. London, UK: The Royal Society.

Schocken, S., & Nisan, N. (2004). From NAND to Tetris in 12 easy steps. In
Proceedings of the 34th Annual Conference on Frontiers in Education (p. 1461).
New York: IEEE.

Seiter, L., & Foreman, B. (2013). Modeling the learning progressions of computa-
tional thinking of primary grade students. In Proceedings of the 9th Annual
International ACM Conference on International Computing Education Research
(ICER’13) (pp. 59–​66). New York: ACM.

Seiter, L. (2015). Using SOLO to classify the programming responses of primary grade
students. In Proceedings of the 46th ACM Technical Symposium on Computer
Science Education (pp. 540–​545). New York: ACM.

Selby, C., & Woollard, J. (2013). Computational thinking: The developing definition.
Retrieved from http://​eprints.soton.ac.uk/​356481

Sentance, S., & Csizmadia, A. (2017). Computing in the curriculum: Challenges and
strategies from a teacher’s perspective. Education and Information Technologies,
22(2), 469–​495.

Statter, D., & Armoni, M. (2016). Teaching abstract thinking in introduction to com-
puter science for 7th graders. In Proceedings of the 11th Workshop in Primary
and Secondary Computing Education (pp. 80–​83). New York: ACM.

Susskind, R. (2017). Tomorrow’s Lawyers: An Introduction to Your Future, 2nd edn.
Oxford, UK: Oxford University Press.

Sykora, C. (2014). Computational thinking for all. Arlington: ISTE. Retrieved from
www.iste.org/​explore/​articleDetail?articleid=152&category=Solutions&articl
e=Computational-​thinking-​for-​all

Tedre, M., & Denning, P. J. (2016). The long quest for computational thinking. In
Proceedings of the 16th Koli Calling Conference on Computing Education
Research (pp. 120–​129). New York, NY: ACM.

Thimbleby, H. (2018). Misunderstanding IT: Hospital cybersecurity and IT problems
reach the courts. Digital Evidence and Electronic Signature Law Review,
15, 11–​32.

Turing, A. M. (1936) (published 1937). On computable numbers, with an application to
the Entscheidungs problem. Proceedings of the London Mathematical Society,
2(42), 230–​265.

Waite, J., Curzon, P., Marsh, D. W., & Sentance, S. (2016). Abstraction and common
classroom activities. In Proceedings of the 11th Workshop in Primary and
Secondary Computing Education (pp. 112–​113). New York: ACM.

Waite, J., Curzon, P., Marsh, W., & Sentance, S. (2017). Teachers’ uses of levels of
abstraction focusing on design. In Proceedings of the 12th Workshop in Primary
and Secondary Computing Education (pp. 115–​116). New York: ACM.

Wing, J. (2006). Computational thinking. Communications of the ACM, 49(3), 33–​35.
Wolz, U., Stone, M., Pearson, K., Pulimood, S. M., & Switzer, M. (2011). Computational

thinking and expository writing in the middle school. ACM Transactions on
Computing Education (TOCE), 11(2), 9.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108654555.018
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 02 Mar 2019 at 10:58:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654555.018
https://www.cambridge.org/core

